25,015 research outputs found

    Implicit learning of recursive context-free grammars

    Get PDF
    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning

    Cognitive constraints and island effects

    Get PDF
    Competence-based theories of island effects play a central role in generative grammar, yet the graded nature of many syntactic islands has never been properly accounted for. Categorical syntactic accounts of island effects have persisted in spite of a wealth of data suggesting that island effects are not categorical in nature and that nonstructural manipulations that leave island structures intact can radically alter judgments of island violations. We argue here, building on work by Paul Deane, Robert Kluender, and others, that processing factors have the potential to account for this otherwise unexplained variation in acceptability judgments. We report the results of self-paced reading experiments and controlled acceptability studies that explore the relationship between processing costs and judgments of acceptability. In each of the three self-paced reading studies, the data indicate that the processing cost of different types of island violations can be significantly reduced to a degree comparable to that of nonisland filler-gap constructions by manipulating a single nonstructural factor. Moreover, this reduction in processing cost is accompanied by significant improvements in acceptability. This evidence favors the hypothesis that island-violating constructions involve numerous processing pressures that aggregate to drive processing difficulty above a threshold, resulting in unacceptability. We examine the implications of these findings for the grammar of filler-gap dependencies

    Islands in the grammar? Standards of evidence

    Get PDF
    When considering how a complex system operates, the observable behavior depends upon both architectural properties of the system and the principles governing its operation. As a simple example, the behavior of computer chess programs depends upon both the processing speed and resources of the computer and the programmed rules that determine how the computer selects its next move. Despite having very similar search techniques, a computer from the 1990s might make a move that its 1970s forerunner would overlook simply because it had more raw computational power. From the naïve observer’s perspective, however, it is not superficially evident if a particular move is dispreferred or overlooked because of computational limitations or the search strategy and decision algorithm. In the case of computers, evidence for the source of any particular behavior can ultimately be found by inspecting the code and tracking the decision process of the computer. But with the human mind, such options are not yet available. The preference for certain behaviors and the dispreference for others may theoretically follow from cognitive limitations or from task-related principles that preclude certain kinds of cognitive operations, or from some combination of the two. This uncertainty gives rise to the fundamental problem of finding evidence for one explanation over the other. Such a problem arises in the analysis of syntactic island effects – the focu

    Discrete modes of social information processing predict individual behavior of fish in a group

    Full text link
    Individual computations and social interactions underlying collective behavior in groups of animals are of great ethological, behavioral, and theoretical interest. While complex individual behaviors have successfully been parsed into small dictionaries of stereotyped behavioral modes, studies of collective behavior largely ignored these findings; instead, their focus was on inferring single, mode-independent social interaction rules that reproduced macroscopic and often qualitative features of group behavior. Here we bring these two approaches together to predict individual swimming patterns of adult zebrafish in a group. We show that fish alternate between an active mode in which they are sensitive to the swimming patterns of conspecifics, and a passive mode where they ignore them. Using a model that accounts for these two modes explicitly, we predict behaviors of individual fish with high accuracy, outperforming previous approaches that assumed a single continuous computation by individuals and simple metric or topological weighing of neighbors behavior. At the group level, switching between active and passive modes is uncorrelated among fish, yet correlated directional swimming behavior still emerges. Our quantitative approach for studying complex, multi-modal individual behavior jointly with emergent group behavior is readily extensible to additional behavioral modes and their neural correlates, as well as to other species

    On empirical methodology, constraints, and hierarchy in artificial grammar learning

    No full text
    This paper considers the AGL literature from a psycholinguistic perspective. It first presents a taxonomy of the experimental familiarization test procedures used, which is followed by a consideration of shortcomings and potential improvements of the empirical methodology. It then turns to reconsidering the issue of grammar learning from the point of view of acquiring constraints, instead of the traditional AGL approach in terms of acquiring sets of rewrite rules. This is, in particular, a natural way of handling long‐distance dependences. The final section addresses an underdeveloped issue in the AGL literature, namely how to detect latent hierarchical structure in AGL response patterns
    corecore