19,462 research outputs found

    BRISC-V emulator: a standalone, installation-free, browser-based teaching tool

    Full text link
    Many computer organization and computer architecture classes have recently started adopting the RISC-V architecture as an alternative to proprietary RISC ISAs and architectures. Emulators are a common teaching tool used to introduce students to writing assembly. We present the BRISC-V (Boston University RISC-V) Emulator and teaching tool, a RISC-V emulator inspired by existing RISC and CISC emulators. The emulator is a web-based, pure javascript implementation meant to simplify deployment, as it does not require maintaining support for different operating systems or any installation. Here we present the workings, usage, and extensibility of the BRISC-V emulator.Published versio

    DIVERSE: a Software Toolkit to Integrate Distributed Simulations with Heterogeneous Virtual Environments

    Get PDF
    We present DIVERSE (Device Independent Virtual Environments- Reconfigurable, Scalable, Extensible), which is a modular collection of complimentary software packages that we have developed to facilitate the creation of distributed operator-in-the-loop simulations. In DIVERSE we introduce a novel implementation of remote shared memory (distributed shared memory) that uses Internet Protocol (IP) networks. We also introduce a new method that automatically extends hardware drivers (not in the operating system kernel driver sense) into inter-process and Internet hardware services. Using DIVERSE, a program can display in a CAVE™, ImmersaDesk™, head mounted display (HMD), desktop or laptop without modification. We have developed a method of configuring user programs at run-time by loading dynamic shared objects (DSOs), in contrast to the more common practice of creating interpreted configuration languages. We find that by loading DSOs the development time, complexity and size of DIVERSE and DIVERSE user applications is significantly reduced. Configurations to support different I/O devices, device emulators, visual displays, and any component of a user application including interaction techniques, can be changed at run-time by loading different sets of DIVERSE DSOs. In addition, interpreted run-time configuration parsers have been implemented using DIVERSE DSOs; new ones can be created as needed. DIVERSE is free software, licensed under the terms of the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL) licenses. We describe the DIVERSE architecture and demonstrate how DIVERSE was used in the development of a specific application, an operator-in-the-loop Navy ship-board crane simulator, which runs unmodified on a desktop computer and/or in a CAVE with motion base motion queuing

    Beta: Bioprinting engineering technology for academia

    Get PDF
    Higher STEM education is a field of growing potential, but too many middle school and high school students are not testing proficiently in STEM subjects. The BETA team worked to improve biology classroom engagement through the development of technologies for high school biology experiments. The BETA project team expanded functionality of an existing product line to allow for better student and teacher user experience and the execution of more interesting experiments. The BETA project’s first goal was to create a modular incubating Box for the high school classroom. This Box, called the BETA Box was designed with a variety of sensors to allow for custom temperature and lighting environments for each experiment. It was completed with a clear interface to control the settings and an automatic image capture system. The team also conducted a feasibility study on auto calibration and dual-extrusion for SE3D’s existing 3D bioprinter. The findings of this study led to the incorporation of a force sensor for auto calibration and the evidence to support the feasibility of dual extrusion, although further work is needed. These additions to the current SE3D educational product line will increase effectiveness in the classroom and allow the target audience, high school students, to better engage in STEM education activities

    An experimental inquiry into the nature of relational goods

    Get PDF
    Our experiment aims at studying the impact of two types of relational goods on the voluntary contributions to the production of a public good, i.e. acquaintance among the contributors and having performed a common work before the experiment. We implement two treatments with 128 participants from two different groups. In the first treatment the subjects are left talking in a room before the experiment (cheap talk treatment); they are not suggested any particular topic to talk about, nor are they requested to perform any activity in particular. The second treatment involves the performance of a common work (namely, the computation of some indices of economic performance of three companies, based on their balance sheets). The two groups of subjects are composed either by people with or without previous acquaintance. An equal number of subjects from each of these groups is then allocated to either treatment. After that the subjects played a standard 10-rounds public goods game in groups of 4. The groups were gender-homogeneous. This allows us also to inquire for the possible presence of a gender effect in our experiment. Our results show that: 1) both common work and previous acquaintance increase the average contribution to the public good, 2) there is a relevant gender effect with women contributing more or less than men, depending on the treatment. Therefore, we conclude that relational goods are important to enhance cooperation, that acquaintance and working together are rather complements than substitutes, and that different relational goods produce different effects on cooperation. Also, we find further evidence for women's behaviour to be more context-specific than men's.relational goods; public goods experiments; gender effect

    Training materials for different categories of users

    Get PDF
    Agricultural and Food Policy, Environmental Economics and Policy, Farm Management, Land Economics/Use, Production Economics, Teaching/Communication/Extension/Profession,

    November, 1966

    Get PDF

    Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: Insights from the canadian biomarker integration network in depression

    Get PDF
    Subsequent to global initiatives in mapping the human brain and investigations of neurobiological markers for brain disorders, the number of multi-site studies involving the collection and sharing of large volumes of brain data, including electroencephalography (EEG), has been increasing. Among the complexities of conducting multi-site studies and increasing the shelf life of biological data beyond the original study are timely standardization and documentation of relevant study parameters. We presentthe insights gained and guidelines established within the EEG working group of the Canadian Biomarker Integration Network in Depression (CAN-BIND). CAN-BIND is a multi-site, multi-investigator, and multiproject network supported by the Ontario Brain Institute with access to Brain-CODE, an informatics platform that hosts a multitude of biological data across a growing list of brain pathologies. We describe our approaches and insights on documenting and standardizing parameters across the study design, data collection, monitoring, analysis, integration, knowledge-translation, and data archiving phases of CAN-BIND projects. We introduce a custom-built EEG toolbox to track data preprocessing with open-access for the scientific community. We also evaluate the impact of variation in equipment setup on the accuracy of acquired data. Collectively, this work is intended to inspire establishing comprehensive and standardized guidelines for multi-site studies
    • …
    corecore