3 research outputs found

    Deep learning-based change detection in remote sensing images:a review

    Get PDF
    Images gathered from different satellites are vastly available these days due to the fast development of remote sensing (RS) technology. These images significantly enhance the data sources of change detection (CD). CD is a technique of recognizing the dissimilarities in the images acquired at distinct intervals and are used for numerous applications, such as urban area development, disaster management, land cover object identification, etc. In recent years, deep learning (DL) techniques have been used tremendously in change detection processes, where it has achieved great success because of their practical applications. Some researchers have even claimed that DL approaches outperform traditional approaches and enhance change detection accuracy. Therefore, this review focuses on deep learning techniques, such as supervised, unsupervised, and semi-supervised for different change detection datasets, such as SAR, multispectral, hyperspectral, VHR, and heterogeneous images, and their advantages and disadvantages will be highlighted. In the end, some significant challenges are discussed to understand the context of improvements in change detection datasets and deep learning models. Overall, this review will be beneficial for the future development of CD methods

    Enhanced change detection performance based on deep despeckling of synthetic aperture radar images

    Get PDF
    Synthetic aperture radar (SAR) image change detection (CD) focuses on identifying changes between two images at different times for the same geographical region. Recently, several deep learning methods have been proposed for performing SAR based CD. However, speckle noise remains a major challenge for these methods. To address this, we propose a despeckling model (DM) that effectively suppresses speckle noise and enhances the performance of the existing CD methods. The proposed despeckling architecture is not only resilient to multi-temporal SAR acquired from one SAR imaging process (i.e., the same number of SAR images looks before and after the change) but also deals with any combination of single or multi-look images acquired prior and after the change. Moreover, as a second contribution, we have also proposed a loss function that effectively suppresses speckle noise, thereby improving the change detection accuracy. Both the despeckling model and the proposed tolerant noise loss function are evaluated extensively on three public real SAR datasets, achieving superior performance compared to existing state-of-the-art SAR CD methods in all datasets
    corecore