990 research outputs found

    A Survey on Energy Efficiency in Smart Homes and Smart Grids

    Get PDF
    Empowered by the emergence of novel information and communication technologies (ICTs) such as sensors and high-performance digital communication systems, Europe has adapted its electricity distribution network into a modern infrastructure known as a smart grid (SG). The benefits of this new infrastructure include precise and real-time capacity for measuring and monitoring the different energy-relevant parameters on the various points of the grid and for the remote operation and optimization of distribution. Furthermore, a new user profile is derived from this novel infrastructure, known as a prosumer (a user that can produce and consume energy to/from the grid), who can benefit from the features derived from applying advanced analytics and semantic technologies in the rich amount of big data generated by the different subsystems. However, this novel, highly interconnected infrastructure also presents some significant drawbacks, like those related to information security (IS). We provide a systematic literature survey of the ICT-empowered environments that comprise SGs and homes, and the application of modern artificial intelligence (AI) related technologies with sensor fusion systems and actuators, ensuring energy efficiency in such systems. Furthermore, we outline the current challenges and outlook for this field. These address new developments on microgrids, and data-driven energy efficiency that leads to better knowledge representation and decision-making for smart homes and SGsThis research was co-funded by Interreg Österreich-Bayern 2014–2020 programme project KI-Net: Bausteine für KI-basierte Optimierungen in der industriellen Fertigung (AB 292). This work is also supported by the ITEA3 OPTIMUM project and ITEA3 SCRATCH project, all of them funded by the Centro Tecnológico de Desarrollo Industrial (CDTI), Spain

    Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions

    Full text link
    In recent years, low-carbon transportation has become an indispensable part as sustainable development strategies of various countries, and plays a very important responsibility in promoting low-carbon cities. However, the security of low-carbon transportation has been threatened from various ways. For example, denial of service attacks pose a great threat to the electric vehicles and vehicle-to-grid networks. To minimize these threats, several methods have been proposed to defense against them. Yet, these methods are only for certain types of scenarios or attacks. Therefore, this review addresses security aspect from holistic view, provides the overview, challenges and future directions of cyber security technologies in low-carbon transportation. Firstly, based on the concept and importance of low-carbon transportation, this review positions the low-carbon transportation services. Then, with the perspective of network architecture and communication mode, this review classifies its typical attack risks. The corresponding defense technologies and relevant security suggestions are further reviewed from perspective of data security, network management security and network application security. Finally, in view of the long term development of low-carbon transportation, future research directions have been concerned.Comment: 34 pages, 6 figures, accepted by journal Renewable and Sustainable Energy Review

    Aid Nexus : A Blockchain Based Financial Distribution System

    Full text link
    Blockchain technology has emerged as a disruptive force with transformative potential across numerous industries, promising efficient and automated solutions that can revolutionize traditional systems. By leveraging decentralized ledger systems, blockchain offers enhanced security, transparency, and transaction verification without the need for intermediaries. The finance sector is exploring blockchain-based solutions for payments, remittances, lending, and investments, while healthcare adopts the technology for medical record keeping, supply chain tracking, and data management. Similarly, supply chain management benefits from blockchain's ability to enhance transparency, traceability, and accountability from raw materials to finished products. Other sectors, including real estate, energy, and government, are also investigating blockchain-based solutions to improve efficiency, security, and transparency. Furthermore, smart contracts within the blockchain enable process automation, reducing manual intervention in distribution workflows. AidNeux, a consortium-based blockchain DApp, reimagines the distribution of financial assistance by addressing inefficiencies and opaqueness. Using smart contracts ensures the security and directness of money transfers. Its robust digital identity verification and real-time auditability reduce fraud risks and strengthen accountability, thereby presenting a scalable, transparent solution to problems inherent to conventional financial aid systems

    Blockchain Technology for Good

    Get PDF

    Privacy and Transparency in Blockchain-based Smart Grid Operations

    Get PDF
    In the past few years, blockchain technology has emerged in numerous smart grid applications, enabling the construction of systems without the need for a trusted third party. Blockchain offers transparency, traceability, and accountability, which lets various energy management system functionalities be executed through smart contracts, such as monitoring, consumption analysis, and intelligent energy adaptation. Nevertheless, revealing sensitive energy consumption information could render users vulnerable to digital and physical assaults. This paper presents a novel method for achieving a dual balance between privacy and transparency, as well as accountability and verifiability. This equilibrium requires the incorporation of cryptographic tools like Secure Mul- tiparty Computation and Verifiable Secret Sharing within the distributed components of a multi- channel blockchain and its associated smart contracts. We corroborate the suggested architecture throughout the entire process of a Demand Response scenario, from the collection of energy data to the ultimate reward. To address our proposal’s constraints, we present countermeasures against accidental crashes and Byzantine behavior while ensuring that the solution remains appropriate for low-performance IoT devices

    False data injection attack (FDIA): An overview and new metrics for fair evaluation of its countermeasure

    Get PDF
    The concept of false data injection attack (FDIA) was introduced originally in the smart grid domain. While the term sounds common, it specifically means the case when an attacker compromises sensor readings in such tricky way that undetected errors are introduced into calculations of state variables and values. Due to the rapid growth of the Internet and associated complex adaptive systems, cyber attackers are interested in exploiting similar attacks in other application domains such as healthcare, finance, defense, governance, etc. In today’s increasingly perilous cyber world of complex adaptive systems, FDIA has become one of the top-priority issues to deal with. It is a necessity today for greater awareness and better mechanism to counter such attack in the cyberspace. Hence, this work presents an overview of the attack, identifies the impact of FDIA in critical domains, and talks about the countermeasures. A taxonomy of the existing countermeasures to defend against FDIA is provided. Unlike other works, we propose some evaluation metrics for FDIA detection and also highlight the scarcity of benchmark datasets to validate the performance of FDIA detection techniques. [Figure not available: see fulltext.] © 2020, The Author(s)
    corecore