1,896 research outputs found

    Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)

    Get PDF
    The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner

    Linear and nonlinear aspects of the tropical 30-60 day oscillation: A modeling study

    Get PDF
    The scientific problem focused on study of the tropical 30-60 day oscillation and explanation for this phenomenon is discussed. The following subject areas are covered: the scientific problem (the importance of low frequency oscillations; suggested mechanisms for developing the tropical 30-60 day oscillation); proposed research and its objective; basic approach to research; and results (satellite data analysis and retrieval development; thermodynamic model of the oscillation; the 5-level GCM)

    The extratropical upper troposphere and lower stratosphere

    Get PDF
    The extratropical upper troposphere and lower stratosphere (Ex-UTLS) is a transition region between the stratosphere and the troposphere. The Ex-UTLS includes the tropopause, a strong static stability gradient and dynamic barrier to transport. The barrier is reflected in tracer profiles. This region exhibits complex dynamical, radiative, and chemical characteristics that place stringent spatial and temporal requirements on observing and modeling systems. The Ex-UTLS couples the stratosphere to the troposphere through chemical constituent transport (of, e.g., ozone), by dynamically linking the stratospheric circulation with tropospheric wave patterns, and via radiative processes tied to optically thick clouds and clear-sky gradients of radiatively active gases. A comprehensive picture of the Ex-UTLS is presented that brings together different definitions of the tropopause, focusing on observed dynamical and chemical structure and their coupling. This integral view recognizes that thermal gradients and dynamic barriers are necessarily linked, that these barriers inhibit mixing and give rise to specific trace gas distributions, and that there are radiative feedbacks that help maintain this structure. The impacts of 21st century anthropogenic changes to the atmosphere due to ozone recovery and climate change will be felt in the Ex-UTLS, and recent simulations of these effects are summarized and placed in context

    Observing convective aggregation

    Get PDF
    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad a distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network

    Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    Get PDF
    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry

    Atmospheric Circulation of Terrestrial Exoplanets

    Full text link
    The investigation of planets around other stars began with the study of gas giants, but is now extending to the discovery and characterization of super-Earths and terrestrial planets. Motivated by this observational tide, we survey the basic dynamical principles governing the atmospheric circulation of terrestrial exoplanets, and discuss the interaction of their circulation with the hydrological cycle and global-scale climate feedbacks. Terrestrial exoplanets occupy a wide range of physical and dynamical conditions, only a small fraction of which have yet been explored in detail. Our approach is to lay out the fundamental dynamical principles governing the atmospheric circulation on terrestrial planets--broadly defined--and show how they can provide a foundation for understanding the atmospheric behavior of these worlds. We first survey basic atmospheric dynamics, including the role of geostrophy, baroclinic instabilities, and jets in the strongly rotating regime (the "extratropics") and the role of the Hadley circulation, wave adjustment of the thermal structure, and the tendency toward equatorial superrotation in the slowly rotating regime (the "tropics"). We then survey key elements of the hydrological cycle, including the factors that control precipitation, humidity, and cloudiness. Next, we summarize key mechanisms by which the circulation affects the global-mean climate, and hence planetary habitability. In particular, we discuss the runaway greenhouse, transitions to snowball states, atmospheric collapse, and the links between atmospheric circulation and CO2 weathering rates. We finish by summarizing the key questions and challenges for this emerging field in the future.Comment: Invited review, in press for the Arizona Space Science Series book "Comparative Climatology of Terrestrial Planets" (S. Mackwell, M. Bullock, and J. Harder, editors). 56 pages, 26 figure

    Modeling the Earth system in the Mission to Planet Earth era

    Get PDF
    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research
    • 

    corecore