189,250 research outputs found

    Using decision-tree classifier systems to extract knowledge from databases

    Get PDF
    One difficulty in applying artificial intelligence techniques to the solution of real world problems is that the development and maintenance of many AI systems, such as those used in diagnostics, require large amounts of human resources. At the same time, databases frequently exist which contain information about the process(es) of interest. Recently, efforts to reduce development and maintenance costs of AI systems have focused on using machine learning techniques to extract knowledge from existing databases. Research is described in the area of knowledge extraction using a class of machine learning techniques called decision-tree classifier systems. Results of this research suggest ways of performing knowledge extraction which may be applied in numerous situations. In addition, a measurement called the concept strength metric (CSM) is described which can be used to determine how well the resulting decision tree can differentiate between the concepts it has learned. The CSM can be used to determine whether or not additional knowledge needs to be extracted from the database. An experiment involving real world data is presented to illustrate the concepts described

    Ethics of Artificial Intelligence Demarcations

    Full text link
    In this paper we present a set of key demarcations, particularly important when discussing ethical and societal issues of current AI research and applications. Properly distinguishing issues and concerns related to Artificial General Intelligence and weak AI, between symbolic and connectionist AI, AI methods, data and applications are prerequisites for an informed debate. Such demarcations would not only facilitate much-needed discussions on ethics on current AI technologies and research. In addition sufficiently establishing such demarcations would also enhance knowledge-sharing and support rigor in interdisciplinary research between technical and social sciences.Comment: Proceedings of the Norwegian AI Symposium 2019 (NAIS 2019), Trondheim, Norwa

    Multi-agent simulations for emergency situations in an airport scenario

    Get PDF
    This paper presents a multi-agent framework using Net- Logo to simulate humanand collective behaviors during emergency evacuations. Emergency situationappears when an unexpected event occurs. In indoor emergency situation, evacuation plans defined by facility manager explain procedure and safety ways tofollow in an emergency situation. A critical and public scenario is an airportwhere there is an everyday transit of thousands of people. In this scenario theimportance is related with incidents statistics regarding overcrowding andcrushing in public buildings. Simulation has the objective of evaluating buildinglayouts considering several possible configurations. Agents could be based onreactive behavior like avoid danger or follow other agent, or in deliberative behaviorbased on BDI model. This tool provides decision support in a real emergencyscenario like an airport, analyzing alternative solutions to the evacuationprocess.Publicad

    No Grice: Computers that Lie, Deceive and Conceal

    Get PDF
    In the future our daily life interactions with other people, with computers, robots and smart environments will be recorded and interpreted by computers or embedded intelligence in environments, furniture, robots, displays, and wearables. These sensors record our activities, our behavior, and our interactions. Fusion of such information and reasoning about such information makes it possible, using computational models of human behavior and activities, to provide context- and person-aware interpretations of human behavior and activities, including determination of attitudes, moods, and emotions. Sensors include cameras, microphones, eye trackers, position and proximity sensors, tactile or smell sensors, et cetera. Sensors can be embedded in an environment, but they can also move around, for example, if they are part of a mobile social robot or if they are part of devices we carry around or are embedded in our clothes or body. \ud \ud Our daily life behavior and daily life interactions are recorded and interpreted. How can we use such environments and how can such environments use us? Do we always want to cooperate with these environments; do these environments always want to cooperate with us? In this paper we argue that there are many reasons that users or rather human partners of these environments do want to keep information about their intentions and their emotions hidden from these smart environments. On the other hand, their artificial interaction partner may have similar reasons to not give away all information they have or to treat their human partner as an opponent rather than someone that has to be supported by smart technology.\ud \ud This will be elaborated in this paper. We will survey examples of human-computer interactions where there is not necessarily a goal to be explicit about intentions and feelings. In subsequent sections we will look at (1) the computer as a conversational partner, (2) the computer as a butler or diary companion, (3) the computer as a teacher or a trainer, acting in a virtual training environment (a serious game), (4) sports applications (that are not necessarily different from serious game or education environments), and games and entertainment applications
    • …
    corecore