210 research outputs found

    Understanding the Impact of Diversity in Software Bugs on Bug Prediction Models

    Get PDF
    Nowadays, software systems are essential for businesses, users and society. At the same time such systems are growing both in complexity and size. In this context, developing high-quality software is a challenging and expensive activity for the software industry. Since software organizations are always limited by their budget, personnel and time, it is not a trivial task to allocate testing and code-review resources to areas that require the most attention. To overcome the above problem, researchers have developed software bug prediction models that can help practitioners to predict the most bug-prone software entities. Although, software bug prediction is a very popular research area, yet its industrial adoption remains limited. In this thesis, we investigate three possible issues with the current state-of-the-art in software bug prediction that affect the practical usability of prediction models. First, we argue that current bug prediction models implicitly assume that all bugs are the same without taking into consideration their impact. We study the impact of bugs in terms of experience of the developers required to fix them. Second, only few studies investigate the impact of specific type of bugs. Therefore, we characterize a severe type of bug called Blocking bugs, and provide approaches to predict them early on. Third, false-negative files are buggy files that bug prediction models incorrectly as non-buggy files. We argue that a large number of false-negative files makes bug prediction models less attractive for developers. In our thesis, we quantify the extent of false-negative files, and manually inspect them in order to better understand their nature

    Representation learning on heterogeneous spatiotemporal networks

    Get PDF
    “The problem of learning latent representations of heterogeneous networks with spatial and temporal attributes has been gaining traction in recent years, given its myriad of real-world applications. Most systems with applications in the field of transportation, urban economics, medical information, online e-commerce, etc., handle big data that can be structured into Spatiotemporal Heterogeneous Networks (SHNs), thereby making efficient analysis of these networks extremely vital. In recent years, representation learning models have proven to be quite efficient in capturing effective lower-dimensional representations of data. But, capturing efficient representations of SHNs continues to pose a challenge for the following reasons: (i) Spatiotemporal data that is structured as SHN encapsulate complex spatial and temporal relationships that exist among real-world objects, rendering traditional feature engineering approaches inefficient and compute-intensive; (ii) Due to the unique nature of the SHNs, existing representation learning techniques cannot be directly adopted to capture their representations. To address the problem of learning representations of SHNs, four novel frameworks that focus on their unique spatial and temporal characteristics are introduced: (i) collective representation learning, which focuses on quantifying the importance of each latent feature using Laplacian scores; (ii) modality aware representation learning, which learns from the complex user mobility pattern; (iii) distributed representation learning, which focuses on learning human mobility patterns by leveraging Natural Language Processing algorithms; and (iv) representation learning with node sense disambiguation, which learns contrastive senses of nodes in SHNs. The developed frameworks can help us capture higher-order spatial and temporal interactions of real-world SHNs. Through data-driven simulations, machine learning and deep learning models trained on the representations learned from the developed frameworks are proven to be much more efficient and effective”--Abstract, page iii

    Research on Gang-Related Violence in the 21st Century

    Get PDF
    Conflict, including the threat or fear of potential violence, or being witness to or a victim of physical violence, constantly surrounds gangs and their communities and is the principal driver sustaining gang life. This Special Issue examines the diverse nature of gang-related violence with the goal of better understanding the growing complexities of gang violence over the last two decades to better inform public policy solutions. The contributions included in this Special Issue highlight the complex nature of gang-related violence in the 21st Century. As much as policy makers, the media, and even scholars like to simplify gang-related violence, all of the studies included in this Special Issue highlight the nuance and variation that exists

    A manifesto on explainability for artificial intelligence in medicine.

    Get PDF
    The rapid increase of interest in, and use of, artificial intelligence (AI) in computer applications has raised a parallel concern about its ability (or lack thereof) to provide understandable, or explainable, output to users. This concern is especially legitimate in biomedical contexts, where patient safety is of paramount importance. This position paper brings together seven researchers working in the field with different roles and perspectives, to explore in depth the concept of explainable AI, or XAI, offering a functional definition and conceptual framework or model that can be used when considering XAI. This is followed by a series of desiderata for attaining explainability in AI, each of which touches upon a key domain in biomedicine

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science.https://digitalcommons.unomaha.edu/isqafacbooks/1000/thumbnail.jp

    xxAI - Beyond Explainable AI

    Get PDF
    This is an open access book. Statistical machine learning (ML) has triggered a renaissance of artificial intelligence (AI). While the most successful ML models, including Deep Neural Networks (DNN), have developed better predictivity, they have become increasingly complex, at the expense of human interpretability (correlation vs. causality). The field of explainable AI (xAI) has emerged with the goal of creating tools and models that are both predictive and interpretable and understandable for humans. Explainable AI is receiving huge interest in the machine learning and AI research communities, across academia, industry, and government, and there is now an excellent opportunity to push towards successful explainable AI applications. This volume will help the research community to accelerate this process, to promote a more systematic use of explainable AI to improve models in diverse applications, and ultimately to better understand how current explainable AI methods need to be improved and what kind of theory of explainable AI is needed. After overviews of current methods and challenges, the editors include chapters that describe new developments in explainable AI. The contributions are from leading researchers in the field, drawn from both academia and industry, and many of the chapters take a clear interdisciplinary approach to problem-solving. The concepts discussed include explainability, causability, and AI interfaces with humans, and the applications include image processing, natural language, law, fairness, and climate science

    The text classification pipeline: Starting shallow, going deeper

    Get PDF
    An increasingly relevant and crucial subfield of Natural Language Processing (NLP), tackled in this PhD thesis from a computer science and engineering perspective, is the Text Classification (TC). Also in this field, the exceptional success of deep learning has sparked a boom over the past ten years. Text retrieval and categorization, information extraction and summarization all rely heavily on TC. The literature has presented numerous datasets, models, and evaluation criteria. Even if languages as Arabic, Chinese, Hindi and others are employed in several works, from a computer science perspective the most used and referred language in the literature concerning TC is English. This is also the language mainly referenced in the rest of this PhD thesis. Even if numerous machine learning techniques have shown outstanding results, the classifier effectiveness depends on the capability to comprehend intricate relations and non-linear correlations in texts. In order to achieve this level of understanding, it is necessary to pay attention not only to the architecture of a model but also to other stages of the TC pipeline. In an NLP framework, a range of text representation techniques and model designs have emerged, including the large language models. These models are capable of turning massive amounts of text into useful vector representations that effectively capture semantically significant information. The fact that this field has been investigated by numerous communities, including data mining, linguistics, and information retrieval, is an aspect of crucial interest. These communities frequently have some overlap, but are mostly separate and do their research on their own. Bringing researchers from other groups together to improve the multidisciplinary comprehension of this field is one of the objectives of this dissertation. Additionally, this dissertation makes an effort to examine text mining from both a traditional and modern perspective. This thesis covers the whole TC pipeline in detail. However, the main contribution is to investigate the impact of every element in the TC pipeline to evaluate the impact on the final performance of a TC model. It is discussed the TC pipeline, including the traditional and the most recent deep learning-based models. This pipeline consists of State-Of-The-Art (SOTA) datasets used in the literature as benchmark, text preprocessing, text representation, machine learning models for TC, evaluation metrics and current SOTA results. In each chapter of this dissertation, I go over each of these steps, covering both the technical advancements and my most significant and recent findings while performing experiments and introducing novel models. The advantages and disadvantages of various options are also listed, along with a thorough comparison of the various approaches. At the end of each chapter, there are my contributions with experimental evaluations and discussions on the results that I have obtained during my three years PhD course. The experiments and the analysis related to each chapter (i.e., each element of the TC pipeline) are the main contributions that I provide, extending the basic knowledge of a regular survey on the matter of TC.An increasingly relevant and crucial subfield of Natural Language Processing (NLP), tackled in this PhD thesis from a computer science and engineering perspective, is the Text Classification (TC). Also in this field, the exceptional success of deep learning has sparked a boom over the past ten years. Text retrieval and categorization, information extraction and summarization all rely heavily on TC. The literature has presented numerous datasets, models, and evaluation criteria. Even if languages as Arabic, Chinese, Hindi and others are employed in several works, from a computer science perspective the most used and referred language in the literature concerning TC is English. This is also the language mainly referenced in the rest of this PhD thesis. Even if numerous machine learning techniques have shown outstanding results, the classifier effectiveness depends on the capability to comprehend intricate relations and non-linear correlations in texts. In order to achieve this level of understanding, it is necessary to pay attention not only to the architecture of a model but also to other stages of the TC pipeline. In an NLP framework, a range of text representation techniques and model designs have emerged, including the large language models. These models are capable of turning massive amounts of text into useful vector representations that effectively capture semantically significant information. The fact that this field has been investigated by numerous communities, including data mining, linguistics, and information retrieval, is an aspect of crucial interest. These communities frequently have some overlap, but are mostly separate and do their research on their own. Bringing researchers from other groups together to improve the multidisciplinary comprehension of this field is one of the objectives of this dissertation. Additionally, this dissertation makes an effort to examine text mining from both a traditional and modern perspective. This thesis covers the whole TC pipeline in detail. However, the main contribution is to investigate the impact of every element in the TC pipeline to evaluate the impact on the final performance of a TC model. It is discussed the TC pipeline, including the traditional and the most recent deep learning-based models. This pipeline consists of State-Of-The-Art (SOTA) datasets used in the literature as benchmark, text preprocessing, text representation, machine learning models for TC, evaluation metrics and current SOTA results. In each chapter of this dissertation, I go over each of these steps, covering both the technical advancements and my most significant and recent findings while performing experiments and introducing novel models. The advantages and disadvantages of various options are also listed, along with a thorough comparison of the various approaches. At the end of each chapter, there are my contributions with experimental evaluations and discussions on the results that I have obtained during my three years PhD course. The experiments and the analysis related to each chapter (i.e., each element of the TC pipeline) are the main contributions that I provide, extending the basic knowledge of a regular survey on the matter of TC
    • …
    corecore