7,114 research outputs found

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Survey on Wireless Sensor Networks for Reliable Life Services and Other Advanced Applications

    Get PDF
    Wireless is an old technology; however with the advancement of science and technology it has enabled us to send signals to one or more devices without tangible wire connections and reduced complexity. The increasing human needs have lead to the integration of different technologies into a single unit and Wireless Sensor Network (WSN) is one such integration where sensors are integrated with wireless system to form a network. This network is used for a plethora of applications in sectors like defence, agriculture, medical, environment and industry

    High-precision grasping and placing for mobile robots

    Get PDF
    This work presents a manipulation system for multiple labware in life science laboratories using the H20 mobile robots. The H20 robot is equipped with the Kinect V2 sensor to identify and estimate the position of the required labware on the workbench. The local features recognition based on SURF algorithm is used. The recognition process is performed for the labware to be grasped and for the workbench holder. Different grippers and labware containers are designed to manipulate different weights of labware and to realize a safe transportation

    Human-in-the-Loop Cyber Physical Systems: Modular Designs for Semi-Autonomous Wheelchair Navigation

    Get PDF
    This project involves the design and development of a prototyping platform and open design framework for a semi-autonomous wheelchair to realize a human-in-the-loop cyber physical system as an assistive technology. The system is designed to assist physically locked-in individuals in navigating indoor environments through the use of modular sensor, communication, and control designs. This enables the user to share control with the wheelchair and allows the system to operate semi-autonomously with human-in-the-loop. The Wheelchair Add-on Modules (WAMs) developed for use in this project are platform-independent and facilitate development and application of semi- autonomous functionality

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Bridges of the BeltLine

    Get PDF
    As currently realized, the Atlanta BeltLine weaves under, over, and through a multitude of overpasses, footbridges, and tunnels. As in any city, this significant feature is simultaneously an asset and a potential hazard. These types of structures are "vulnerable critical facilities" that should be included in emergency risk assessments and mitigation planning (FEMA, 2013). As such, the Bridges of the BeltLine project was proposed as a mixed-methods study to understand how people's movement along the BeltLine can inform emergency management mitigation, planning, and response. Understanding pedestrian flow in cities has been underfunded and understudied but is nonetheless critical to city infrastructure monitoring and improvement projects. This study focused on developing inexpensive, low-power consumption sensors capable of detecting human presence while preserving privacy, as well as a survey designed to collect data that the sensors cannot. The survey data were intended to describe BeltLine users, querying on demographics, reasons, frequency, duration of use, and mode of travel to and on the BeltLine. After conferring with the Atlanta BeltLine, Inc. (ABI) leadership, it became apparent that ABI's primary interest is in understanding which communities are being served by the BeltLine and whether it has changed commuting and travel behaviors or created new demand. As a result, the project's original focus on emergency management was expanded to explore which communities are being served and for what kind of use. As such, the project's revised objective was two-fold: to facilitate understanding of (a) whether the BeltLine is serving the adjacent communities and purpose of use and (b) to inform emergency mitigation, planning, and response.This research was made possible by a grant from Georgia Tech's Executive Vice President of Research, Small Bets Seed Grants program, with supplemental funding from the Center for the Development and Application of Internet of Things Technologies (CDAIT)
    • …
    corecore