67 research outputs found

    Comparison of GLCM and First Order Feature Extraction Methods for Classification of Mammogram Images

    Get PDF
    Breast cancer is one of the main causes of death in women and ranks first in cancer cases in Indonesia. Therefore, an early detection and prevention of breast cancer is necessary, one of which is through mammography procedures. A machine learning classifier such as Support Vector Machines (SVM) could be used as an aid to the doctors and radiologist in diagnosing breast cancer from the mammogram images. The aim of this paper is to compare two feature extraction methods used in SVM, namely the Gray Level Co-Occurrence Matrix (GLCM) and first order with two kernels for each method, namely Gaussian and Polynomial. Classification using SVM method is carried out by testing several parameters such as the value of C, gamma, degree and varying the pixel spacing values ​​in GLCM, which usually in previous studies only used the default pixel spacing. The dataset consists of 500 mammogram images containing 250 benign and malignant images, respectively. This study is expected to find out the best method with the highest accuracy between these two texture feature extractions and and able to distinguish between benign and malignant classes correctly. The result achieved that Gray Level Co-Occurrence Matrix (GLCM) feature extraction method with both Gaussian and Polynomial kernel yields the best performance with an accuracy of 89%

    A Novel Hybrid K-Means and GMM Machine Learning Model for Breast Cancer Detection

    Get PDF
    Breast cancer is the second leading cause of death among a large number of women worldwide. It may be challenging for radiologists to diagnose and treat breast cancer. Consequently, primary care improves disease prevention and death. Early detection increases treatment options and saves life, which is the major target of this research. This research indicates the versatility of the methodology by integrating contemporary segmentation approaches with machine learning methods, which are developing areas of research. In the pre-processing process, an adaptive median filter is utilized for noise removal, enhancement of image quality, conservation of edges, and smoothing. This research makes a significant contribution by proposing a new parameter for evaluating K-means and a Gaussian mixture model (GMM) performance. A hybrid combination of segmentation and detection was applied to breast cancer. The proposed technique is significant for classifying benign and malignant tumors. The simulated results are discussed and evaluated to determine the competence of this method for the early diagnosis of breast cancer. This method allows medical experts to recognize breast cancer at a faster rate and provide higher accuracy. An ANOVA test was used to determine the multi-variant analysis and prediction rate for the proposed method

    Investigating the role of machine learning and deep learning techniques in medical image segmentation

    Get PDF
    openThis work originates from the growing interest of the medical imaging community in the application of machine learning techniques and, from deep learning to improve the accuracy of cancerscreening. The thesis is structured into two different tasks. In the first part, magnetic resonance images were analysed in order to support clinical experts in the treatment of patients with brain tumour metastases (BM). The main topic related to this study was to investigate whether BM segmentation may be approached successfully by two supervised ML classifiers belonging to feature-based and deep learning approaches, respectively. SVM and V-Net Convolutional Neural Network model are selected from the literature as representative of the two approaches. The second task related to this thesisis illustrated the development of a deep learning study aimed to process and classify lesions in mammograms with the use of slender neural networks. Mammography has a central role in screening and diagnosis of breast lesions. Deep Convolutional Neural Networks have shown a great potentiality to address the issue of early detection of breast cancer with an acceptable level of accuracy and reproducibility. A traditional convolution network was compared with a novel one obtained making use of much more efficient depth wise separable convolution layers. As a final goal to integrate the system developed in clinical practice, for both fields studied, all the Medical Imaging and Pattern Recognition algorithmic solutions have been integrated into a MATLAB® software packageopenInformatica e matematica del calcologonella gloriaGonella, Glori

    Segmentation of the breast region with pectoral muscle suppression and automatic breast density classification

    Get PDF
    Projecte final de carrera fet en col.laboració amb Université catholique de Louvain. Ecole Polytechnique de LouvainBreast cancer is one of the major causes of death among women. Nowadays screening mammography is the most adopted technique to perform an early breast cancer detection ahead other procedures like screen film mammography (SFM) or ultrasound scan. Computer assisted diagnosis (CAD) of mammograms attempts to help radiologists providing an automatic procedure to detect possible cancers in mammograms. Suspicious breast cancers appear as white spots in mammograms, indicating small clusters of micro-calcifications. Mammogram sensitivity decreases due some factors like density of the breast, presence of labels, artifacts or even pectoral muscle. The pre-processing of mammogram images is a very important step in the breast cancer analysis and detection because it might reduce the number of false positives. In this thesis we propose a method to segment and classify automatically mammograms according to their density. We perform several procedures including pre-processing (enhancement of the image, noise reduction, orientation finding or borders removal) and segmentation (separate the breast from the background, labels and pectoral muscle present in the mammograms) in order to increase the sensitivity of our CAD system. The final goal is the classification for diagnosis, in other words, finding the density class for an incoming mammography in order tot determine if more tests are needed to find possible cancers in the image. This functionality will be included in a new clinical imaging annotation system for computer aided breast cancer screening developed by the Communications and Remote Sensing Department at the Université Catholique de Louvain. The source code for the pre-processing and segmentation step has been programmed in C++ using the library of image processing ITK and CMake compiler. The performed method has been applied to medio-lateral oblique-view (MLO) mammograms as well as on caniocauldal mammograms (CC) belonging to different databases. The classification step has been implemented in Matlab. We have tested our pre-processing method obtaining a rate of 100% success removing labels and artifacts from mammograms of mini-MIAS database. The pectoral removal rate has been evaluated subjectively obtaining a rate of good removal of 57.76%. Finally, for the classification step, the best recognition rate that we have obtained was 76.25% using only pixel values, and 77.5% adding texture features, classifying images belonging to mini-MIAS database into 3 different density types. These results can be compared with the actual state of the art in segmentation and classification of biomedical images.El cáncer de mama es una de las mayores causas de muerte entre las mujeres. Actualmente, las mamografías digitales son la técnica más adoptada para realizar una previa detección de estos cánceres antes que otros procedimientos como "screen film mammography (SFM)" o escáneres de ultrasonidos. Los programas de diagnóstico automático (CAD) ayudan a los radiólogos proveyéndolos de un procedimiento automático para detectar posibles cánceres en las mamografías. Posibles cánceres aparecen en las mamografías como puntos blancos indicando pequeños grupos de micro-calcificaciones. La sensibilidad de las mamografias decrece debido a algunos factores como la densidad del pecho, presencia de etiquetas o artefactos o incluso de músculo pectoral. El pre-procesado de las mamografías es un paso muy importante en la detección de posibles cánceres de mama ya que puede reducir el número de falsos positivos. En esta tesis proponemos un método para segmentar y clasificar automáticamente las mamografías según su densidad. Hemos realizado varios procedimientos incluyendo, pre-procesado (realce de la imagen, reducción de ruido, descubrimiento de la orientación o supresión de bordes) y segmentación (separar el pecho de fondo, etiquetas y músculo pectoral presente en mamografías) para incrementar la sensibilidad de nuestro sistema CAD. El objetivo final es la clasificación para diagnosis, en otras palabras, encontrar la clase de densidad para una mamografía entrante y determinar si son necesarios más pruebas para encontrar posibles cánceres en las imágenes. Esta funcionalidad va a ser incluida en una nueva aplicación ara anotación de imágenes clínicas desarrollada por el Departamento de Comunicación y Detección Remota de la Universidad Católica de Lovaina. El código fuente para el pre-procesado y la segmentación ha sido desarrollado en C++ utilizando la librería de procesado de imagen ITK y el compilador CMake. El método implementado puede ser aplicado a tanto medio-lateral (MLO) como a caniocauldal mamografías (CC) pertenecientes a diferentes bases de datos. El método de clasificación ha sido implementado en Matlab. Hemos testeado nuestro método de pre-procesado obteniendo una tasa de suceso próxima al 100% en la eliminación de etiquetas y artefactos de la base de datos de mamografías mini-MIAS. La tasa de supresión de músculo pectoral ha sido evaluada de forma subjetiva obteniendo un 57.76%. Finalmente, en el método de clasificación se ha obtenido un 76.25% usando sólo información de los píxeles y un 77.5% usando información de texturas. Los resultados pueden ser comparados con el actual estado del arte en segmentación y clasificación de imágenes biomédicas.El càncer de mama és una de les majors causes de mort entre les dones. Actualment, les mamografies digitals són la tècnica més utilitzada per realitzar una prèvia detecció d'aquests càncers abans que altres procediments com "screen film mammography (SFM)" o escàners d'ultrasons. Els programes de diagnòstic automàtic (CAD) ajuden als radiòlegs proveïnt d'un procediment automàtic per detectar possibles càncers a les mamografies. Possibles càncers apareixen en les mamografies com punts blancs indicant petits grups de micro-calcificacions. La sensibilitat de les mamografies decreix a causa d'alguns factors com la densitat del pit, presència d'etiquetes o artefactes o fins i tot de múscul pectoral. El pre-processat de les mamografies és un pas molt important en la detecció de possibles càncers de mama ja que pot reduir el nombre de falsos positius. En aquesta tesi proposem un mètode per segmentar i classificar automàticament les mamografies segons la seva densitat. Hem realitzat diversos procediments incloent, pre-processat (realç de la imatge, reducció de soroll, descobriment de l'orientació o supressió de vores) i segmentació (separar el pit de fons, etiquetes i múscul pectoral present en mamografies) per incrementar la sensibilitat de nostre sistema CAD. L'objectiu final és la classificació per diagnosi, en altres paraules, trobar la classe de densitat per a una mamografia entrant i determinar si són necessaris més proves per trobar possibles càncers en les imatges. Aquesta funcionalitat serà inclosa en una nova aplicació ara anotació d'imatges clíniques desenvolupada pel Departament de Comunicació i Detecció Remota de la Universitat Catòlica de Lovaina. El codi font per al pre-processat i la segmentació ha estat desenvolupat en C + + utilitzant la llibreria de processat d'imatge ITK i el compilador CMake. El mètode implementat pot ser aplicat a tant mediolateral (MLO) com a caniocauldal mamografies (CC) pertanyents a diferents bases de dades. El mètode de classificació ha estat implementat en Matlab. Hem testejat el nostre mètode de pre-processat obtenint una taxa de succés propera al 100% en l'eliminació d'etiquetes i artefactes de la base de dades de mamografies mini-MIAS. La taxa de supressió de múscul pectoral ha estat avaluada de manera subjectiva obtenint un 57.76%. Finalment, en el mètode de classificació s'ha obtingut un 76.25% usant només informació dels píxels i un 77.5% usant informació de textures. Els resultats poden ser comparats amb l'actual estat de l'art en segmentació i classificació d'imatges biomèdiques

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans

    Computer-aided detection and diagnosis of breast cancer in 2D and 3D medical imaging through multifractal analysis

    Get PDF
    This Thesis describes the research work performed in the scope of a doctoral research program and presents its conclusions and contributions. The research activities were carried on in the industry with Siemens S.A. Healthcare Sector, in integration with a research team. Siemens S.A. Healthcare Sector is one of the world biggest suppliers of products, services and complete solutions in the medical sector. The company offers a wide selection of diagnostic and therapeutic equipment and information systems. Siemens products for medical imaging and in vivo diagnostics include: ultrasound, computer tomography, mammography, digital breast tomosynthesis, magnetic resonance, equipment to angiography and coronary angiography, nuclear imaging, and many others. Siemens has a vast experience in Healthcare and at the beginning of this project it was strategically interested in solutions to improve the detection of Breast Cancer, to increase its competitiveness in the sector. The company owns several patents related with self-similarity analysis, which formed the background of this Thesis. Furthermore, Siemens intended to explore commercially the computer- aided automatic detection and diagnosis eld for portfolio integration. Therefore, with the high knowledge acquired by University of Beira Interior in this area together with this Thesis, will allow Siemens to apply the most recent scienti c progress in the detection of the breast cancer, and it is foreseeable that together we can develop a new technology with high potential. The project resulted in the submission of two invention disclosures for evaluation in Siemens A.G., two articles published in peer-reviewed journals indexed in ISI Science Citation Index, two other articles submitted in peer-reviewed journals, and several international conference papers. This work on computer-aided-diagnosis in breast led to innovative software and novel processes of research and development, for which the project received the Siemens Innovation Award in 2012. It was very rewarding to carry on such technological and innovative project in a socially sensitive area as Breast Cancer.No cancro da mama a deteção precoce e o diagnóstico correto são de extrema importância na prescrição terapêutica e caz e e ciente, que potencie o aumento da taxa de sobrevivência à doença. A teoria multifractal foi inicialmente introduzida no contexto da análise de sinal e a sua utilidade foi demonstrada na descrição de comportamentos siológicos de bio-sinais e até na deteção e predição de patologias. Nesta Tese, três métodos multifractais foram estendidos para imagens bi-dimensionais (2D) e comparados na deteção de microcalci cações em mamogramas. Um destes métodos foi também adaptado para a classi cação de massas da mama, em cortes transversais 2D obtidos por ressonância magnética (RM) de mama, em grupos de massas provavelmente benignas e com suspeição de malignidade. Um novo método de análise multifractal usando a lacunaridade tri-dimensional (3D) foi proposto para classi cação de massas da mama em imagens volumétricas 3D de RM de mama. A análise multifractal revelou diferenças na complexidade subjacente às localizações das microcalci cações em relação aos tecidos normais, permitindo uma boa exatidão da sua deteção em mamogramas. Adicionalmente, foram extraídas por análise multifractal características dos tecidos que permitiram identi car os casos tipicamente recomendados para biópsia em imagens 2D de RM de mama. A análise multifractal 3D foi e caz na classi cação de lesões mamárias benignas e malignas em imagens 3D de RM de mama. Este método foi mais exato para esta classi cação do que o método 2D ou o método padrão de análise de contraste cinético tumoral. Em conclusão, a análise multifractal fornece informação útil para deteção auxiliada por computador em mamogra a e diagnóstico auxiliado por computador em imagens 2D e 3D de RM de mama, tendo o potencial de complementar a interpretação dos radiologistas

    Computer-aided Detection of Breast Cancer in Digital Tomosynthesis Imaging Using Deep and Multiple Instance Learning

    Get PDF
    Breast cancer is the most common cancer among women in the world. Nevertheless, early detection of breast cancer improves the chance of successful treatment. Digital breast tomosynthesis (DBT) as a new tomographic technique was developed to minimize the limitations of conventional digital mammography screening. A DBT is a quasi-three-dimensional image that is reconstructed from a small number of two-dimensional (2D) low-dose X-ray images. The 2D X-ray images are acquired over a limited angular around the breast. Our research aims to introduce computer-aided detection (CAD) frameworks to detect early signs of breast cancer in DBTs. In this thesis, we propose three CAD frameworks for detection of breast cancer in DBTs. The first CAD framework is based on hand-crafted feature extraction. Concerning early signs of breast cancer: mass, micro-calcifications, and bilateral asymmetry between left and right breast, the system includes three separate channels to detect each sign. Next two CAD frameworks automatically learn complex patterns of 2D slices using the deep convolutional neural network and the deep cardinality-restricted Boltzmann machines. Finally, the CAD frameworks employ a multiple-instance learning approach with randomized trees algorithm to classify DBT images based on extracted information from 2D slices. The frameworks operate on 2D slices which are generated from DBT volumes. These frameworks are developed and evaluated using 5,040 2D image slices obtained from 87 DBT volumes. We demonstrate the validation and usefulness of the proposed CAD frameworks within empirical experiments for detecting breast cancer in DBTs

    Segmentation, Super-resolution and Fusion for Digital Mammogram Classification

    Get PDF
    Mammography is one of the most common and effective techniques used by radiologists for the early detection of breast cancer. Recently, computer-aided detection/diagnosis (CAD) has become a major research topic in medical imaging and has been widely applied in clinical situations. According to statics, early detection of cancer can reduce the mortality rates by 30% to 70%, therefore detection and diagnosis in the early stage are very important. CAD systems are designed primarily to assist radiologists in detecting and classifying abnormalities in medical scan images, but the main challenges hindering their wider deployment is the difficulty in achieving accuracy rates that help improve radiologists’ performance. The detection and diagnosis of breast cancer face two main issues: the accuracy of the CAD system, and the radiologists’ performance in reading and diagnosing mammograms. This thesis focused on the accuracy of CAD systems. In particular, we investigated two main steps of CAD systems; pre-processing (enhancement and segmentation), feature extraction and classification. Through this investigation, we make five main contributions to the field of automatic mammogram analysis. In automated mammogram analysis, image segmentation techniques are employed in breast boundary or region-of-interest (ROI) extraction. In most Medio-Lateral Oblique (MLO) views of mammograms, the pectoral muscle represents a predominant density region and it is important to detect and segment out this muscle region during pre-processing because it could be bias to the detection of breast cancer. An important reason for the breast border extraction is that it will limit the search-zone for abnormalities in the region of the breast without undue influence from the background of the mammogram. Therefore, we propose a new scheme for breast border extraction, artifact removal and removal of annotations, which are found in the background of mammograms. This was achieved using an local adaptive threshold that creates a binary mask for the images, followed by the use of morphological operations. Furthermore, an adaptive algorithm is proposed to detect and remove the pectoral muscle automatically. Feature extraction is another important step of any image-based pattern classification system. The performance of the corresponding classification depends very much on how well the extracted features represent the object of interest. We investigated a range of different texture feature sets such as Local Binary Pattern Histogram (LBPH), Histogram of Oriented Gradients (HOG) descriptor, and Gray Level Co-occurrence Matrix (GLCM). We propose the use of multi-scale features based on wavelet and local binary patterns for mammogram classification. We extract histograms of LBP codes from the original image as well as the wavelet sub-bands. Extracted features are combined into a single feature set. Experimental results show that our proposed method of combining LBPH features obtained from the original image and with LBPH features obtained from the wavelet domain increase the classification accuracy (sensitivity and specificity) when compared with LBPH extracted from the original image. The feature vector size could be large for some types of feature extraction schemes and they may contain redundant features that could have a negative effect on the performance of classification accuracy. Therefore, feature vector size reduction is needed to achieve higher accuracy as well as efficiency (processing and storage). We reduced the size of the features by applying principle component analysis (PCA) on the feature set and only chose a small number of eigen components to represent the features. Experimental results showed enhancement in the mammogram classification accuracy with a small set of features when compared with using original feature vector. Then we investigated and propose the use of the feature and decision fusion in mammogram classification. In feature-level fusion, two or more extracted feature sets of the same mammogram are concatenated into a single larger fused feature vector to represent the mammogram. Whereas in decision-level fusion, the results of individual classifiers based on distinct features extracted from the same mammogram are combined into a single decision. In this case the final decision is made by majority voting among the results of individual classifiers. Finally, we investigated the use of super resolution as a pre-processing step to enhance the mammograms prior to extracting features. From the preliminary experimental results we conclude that using enhanced mammograms have a positive effect on the performance of the system. Overall, our combination of proposals outperforms several existing schemes published in the literature

    IMAGE UNDERSTANDING OF MOLAR PREGNANCY BASED ON ANOMALIES DETECTION

    Get PDF
    Cancer occurs when normal cells grow and multiply without normal control. As the cells multiply, they form an area of abnormal cells, known as a tumour. Many tumours exhibit abnormal chromosomal segregation at cell division. These anomalies play an important role in detecting molar pregnancy cancer. Molar pregnancy, also known as hydatidiform mole, can be categorised into partial (PHM) and complete (CHM) mole, persistent gestational trophoblastic and choriocarcinoma. Hydatidiform moles are most commonly found in women under the age of 17 or over the age of 35. Hydatidiform moles can be detected by morphological and histopathological examination. Even experienced pathologists cannot easily classify between complete and partial hydatidiform moles. However, the distinction between complete and partial hydatidiform moles is important in order to recommend the appropriate treatment method. Therefore, research into molar pregnancy image analysis and understanding is critical. The hypothesis of this research project is that an anomaly detection approach to analyse molar pregnancy images can improve image analysis and classification of normal PHM and CHM villi. The primary aim of this research project is to develop a novel method, based on anomaly detection, to identify and classify anomalous villi in molar pregnancy stained images. The novel method is developed to simulate expert pathologists’ approach in diagnosis of anomalous villi. The knowledge and heuristics elicited from two expert pathologists are combined with the morphological domain knowledge of molar pregnancy, to develop a heuristic multi-neural network architecture designed to classify the villi into their appropriated anomalous types. This study confirmed that a single feature cannot give enough discriminative power for villi classification. Whereas expert pathologists consider the size and shape before textural features, this thesis demonstrated that the textural feature has a higher discriminative power than size and shape. The first heuristic-based multi-neural network, which was based on 15 elicited features, achieved an improved average accuracy of 81.2%, compared to the traditional multi-layer perceptron (80.5%); however, the recall of CHM villi class was still low (64.3%). Two further textural features, which were elicited and added to the second heuristic-based multi-neural network, have improved the average accuracy from 81.2% to 86.1% and the recall of CHM villi class from 64.3% to 73.5%. The precision of the multi-neural network II has also increased from 82.7% to 89.5% for normal villi class, from 81.3% to 84.7% for PHM villi class and from 80.8% to 86% for CHM villi class. To support pathologists to visualise the results of the segmentation, a software tool, Hydatidiform Mole Analysis Tool (HYMAT), was developed compiling the morphological and pathological data for each villus analysis
    • …
    corecore