21 research outputs found

    Sensitivity optimization of micro-machined thermo-resistive flow-rate sensors on silicon substrates

    Full text link
    We report on an optimized micro-machined thermal flow-rate sensor as part of an autonomous multi-parameter sensing device for water network monitoring. The sensor has been optimized under the following constraints: low power consumption and high sensitivity, while employing a large thermal conductivity substrate, namely silicon. The resulting device consists of a platinum resistive heater deposited on a thin silicon pillar ~ 100 ÎĽ\mum high and 5 ÎĽ\mum wide in the middle of a nearly 100 ÎĽ\mum wide cavity. Operated under the anemometric scheme, the reported sensor shows a larger sensitivity in the velocity range up to 1 m/s compared to different sensors based on similar high conductivity substrates such as bulk silicon or silicon membrane with a power consumption of 44 mW. Obtained performances are assessed with both CFD simulation and experimental characterization

    Modular integration and on-chip sensing approaches for tunable fluid control polymer microdevices

    Get PDF
    228 p.Doktore tesi honetan mikroemariak kontrolatzeko elementuak diseinatu eta garatuko dira, mikrobalbula eta mikrosentsore bat zehazki. Ondoren, gailu horiek batera integratuko dira likido emari kontrolatzaile bat sortzeko asmotan. Helburu nagusia gailuen fabrikazio arkitektura modular bat frogatzea da, non Lab-on-a-Chip prototipoak garatzeko beharrezko fase guztiak harmonizatuz, Cyclic-Olefin-Polymer termoplastikozko mikrogailu merkeak pausu gutxi batzuetan garatuko diren, hauen kalitate industriala bermatuz. Ildo horretan, mikrogailuak prototipotik produkturako trantsizio azkar, erraz, errentagarri eta arriskurik gabeen bidez lortu daitezkeenetz frogatuko da

    City Natural Gas Metering

    Get PDF

    Microfabricated pressure and shear stress sensors

    Get PDF
    A microfabricated pressure sensor. The pressure sensor comprises a raised diaphragm disposed on a substrate. The diaphragm is configured to bend in response to an applied pressure difference. A strain gauge of a conductive material is coupled to a surface of the raised diaphragm and to at least one of the substrate and a piece rigidly connected to the substrate

    Microfluidic Flow Sensing Approaches

    Get PDF
    Precise flow metrology has an increasing demand in many microfluidic related applications. At the scale and scope of interests, Capillary number instead of Reynold number defines the flow characteristics. The interactions between fluid medium and flow channel surface or the surface tension, cavitation, dissolution, and others play critical roles in microfluidic flow metrology. Conventional flow measurement approaches are not sufficient for solving these issues. This chapter will review the currently available products on the market, their microfluidic flow sensing technologies, the technologies with research and development, the major factors impacting flow metrology, and the prospective sensing approaches for future microfluidic flow sensing

    Thermal flow sensors for harsh environments

    Get PDF
    Flow sensing in hostile environments is of increasing interest for applications in the automotive, aerospace, and chemical and resource industries. There are thermal and non-thermal approaches for high-temperature flow measurement. Compared to their non-thermal counterparts, thermal flow sensors have recently attracted a great deal of interest due to the ease of fabrication, lack of moving parts and higher sensitivity. In recent years, various thermal flow sensors have been developed to operate at temperatures above 500 °C. Microelectronic technologies such as silicon-on-insulator (SOI), and complementary metal-oxide semiconductor (CMOS) have been used to make thermal flow sensors. Thermal sensors with various heating and sensing materials such as metals, semiconductors, polymers and ceramics can be selected according to the targeted working temperature. The performance of these thermal flow sensors is evaluated based on parameters such as thermal response time, flow sensitivity. The data from thermal flow sensors reviewed in this paper indicate that the sensing principle is suitable for the operation under harsh environments. Finally, the paper discusses the packaging of the sensor, which is the most important aspect of any high-temperature sensing application. Other than the conventional wire-bonding, various novel packaging techniques have been developed for high-temperature application

    Technologies for the integration of Through Silicon Vias in MEMS packages

    Get PDF
    Ein vertikales Stapeln von Si-Chips stellt eine neue Möglichkeit zur Erhöhung der Bauelemente-Integrationsdichte in Gehäusen dar. Chips werden dafür aufeinander platziert, fixiert und untereinander durch vertiakle Durchführungen (Through Silion Vias) verbunden. In dieser Arbeit wird ein neuer Ansatz zur Integration von Through Silicon Vias in 3D MEMS - Aufbauten diskutiert

    3D Structuration Techniques of LTCC for Microsystems Applications

    Get PDF
    This thesis aimed at developing new 3D structuration techniques for a relatively recent new ceramic technology called LTCC, which stands for Low Temperature, Co-fired Ceramic. It is a material originally developed for the microelectronic packaging industry; its chemical and thermal stabilities make it suitable to military-grade and automotive applications, such as car ignition systems and Wi-Fi antennae (GHz frequencies). In recent years however, the research in ceramic microsystems has seen a growing interest for microfluidics, packaging, MEMS and sensors. Positioned at the crossing of classical thick-film technology on alumina substrate and of high temperature ceramics, this new kind of easily structurable ceramic is filling the technological and dimensional gap between microsystems in Silicon and classical "macro microsystems", in the sense that we can now structure microdevices in the range from 150 mm to 150 mm. In effect, LTCC technology allows printing conductors and other inks from 30 mm to many mm, structuration from 150 mm to 150 mm, and suspended structures with gaps down to 30 mm thanks to sacrificial materials. Sensors and their packaging are now merged in what we can call "functional packaging". The contributions of this thesis lie both in the technological aspects we brought, and in the innovative microfluidic sensors and devices created using our developed methods. These realizations would not have been possible with the standard lamination and firing techniques used so far. Hence, we allow circumventing the problems related to microfluidics circuitry: for instance, the difficulty to control final fired dimensions, the burden to produce cavities or open structures and the associated delaminations of tapes, and the absence of "recipe" for the industrialization of fluidic devices. The achievements of the presented research can be summarized as follows: The control of final dimensions is mastered after having studied the influence of lamination parameters, proving they have a considerable impact. It is now possible to have a set of design rules for a given material, deviating from suppliers' recommendations for the manufacture of slender structures requiring reduced lamination. A new lamination method was set up, permitting the assembly of complex microfluidic circuits that would normally not sustain standard lamination. The method is based on partial pseudo-isostatic sub-laminations, with the help of a constrained rubber, subsequently consolidated together with a final standard uniaxial lamination. The conflict between well bonded tapes and acceptable output geometry is greatly attenuated. We achieved the formulation of a new class of Sacrificial Volume Materials (SVM) to allow the fabrication of open structures on LTCC and on standard alumina substrates; these are indeed screen-printable inks made by mixing together mineral compounds, a glassy phase and experimental organic binders. This is an appreciable improvement over the so-far existing SVMs for LTCC, limited to closed structures such as thin membranes. An innovative industrial-grade potentially low-cost diagnostics multisensor for the pneumatic industry was developed, allowing the measurement of compressed air pressure, flow and temperature. The device is entirely mounted by soldering onto an electro-fluidic platform, de facto making it a true electro-fluidic SMD component in itself. It comprises additionally its own integrated SMD electronics, and thanks to standard hybrid assembly techniques, gets rid of external wires and tubings – this prowess was never achieved before. This opens the way for in situ diagnostics of industrial systems through the use of low-cost integrated sensors that directly output conditioned signals. In addition to the abovementioned developments, we propose an extensive review of existing Sacrificial Volume Materials, and we present numerous applications of LTCC to sensors and microsystems, such as capacitive microforce sensors, a chemical microreactor and microthrusters. In conclusion, LTCC is a technology adapted to the industrial production of microfluidic sensors and devices: the fabrication steps are all industrializable, with an easy transition from prototyping to mass production. Nonetheless, the structuration of channels, cavities and membranes obey complex rules; it is for the moment not yet possible to choose with accuracy the right manufacturing parameters without testing. Consequently, thorough engineering and mastering of the know-how of the whole manufacturing process is still necessary to produce efficient LTCC electro-fluidic circuits, in contrast with older techniques such as classical thick-film technology on alumina substrates or PCBs in FR-4. Notwithstanding its lack of maturity, the still young LTCC technology is promising in both the microelectronics and microfluidics domains. Engineers have a better understanding of the structuration possibilities, of the implications of lamination, and of the most common problems; they have now all the tools in hand to create complex microfluidics circuits

    A Hot-Wire Anemometer for Particle Counters

    Get PDF
    Portable real-time air quality monitoring is becoming a reality. While the data quality of these devices may be questionable, they have shown to be promising. One such device is the optical particle counter. The particle counter functions by having laminar airflow with constant velocity traverse the path of a laser beam within an airflow channel. This thesis presents the design and integration of a hot-wire anemometer into the flow channel. The addition of an anemometer allows for real-time airflow velocity measurements to be performed and adjusted. Data from the anemometer can also be used to directly offset irregularities in particulate measurements during flow speeds outside the corrective capabilities of the fan. Experimental results show that an integrated anemometer is capable of correcting varying external disturbances and improving the accuracy of particle counting measurements
    corecore