54 research outputs found

    Shilnikov problem in Filippov dynamical systems

    Full text link
    In this paper we introduce the concept of sliding Shilnikov orbits for 33D Filippov systems. In short, such an orbit is a piecewise smooth closed curve, composed by Filippov trajectories, which slides on the switching surface and connects a Filippov equilibrium to itself, namely a pseudo saddle-focus. A version of the Shilnikov's Theorem is provided for such systems. Particularly, we show that sliding Shilnikov orbits occur in generic one-parameter families of Filippov systems, and that arbitrarily close to a sliding Shilnikov orbit there exist countably infinitely many sliding periodic orbits. Here, no additional Shilnikov-like assumption is needed in order to get this last result. In addition, we show the existence of sliding Shilnikov orbits in discontinuous piecewise linear differential systems. As far as we know, the examples of Fillippov systems provided in this paper are the first exhibiting such a sliding phenomenon

    Existence of homoclinic connections in continuous piecewise linear systems

    Get PDF
    Altres ajuts: Conserjería de Educación y Ciencia de la Junta de Andalucía (TIC-0130, EXC/2005/FQM-872, P08-FQM-03770)Altres ajuts: Universitat de les Illes Balears grant UIB2005/6 and by CAIB grand number CEH-064864Numerical methods are often used to put in evidence the existence of global connections in differential systems. The principal reason is that the corresponding analytical proofs are usually very complicated. In this work we give an analytical proof of the existence of a pair of homoclinic connections in a continuous piecewise linear system, which can be considered to be a version of the widely studied Michelson system. Although the computations developed in this proof are specific to the system, the techniques can be extended to other piecewise linear systems

    On Takens' Last Problem: tangencies and time averages near heteroclinic networks

    Get PDF
    We obtain a structurally stable family of smooth ordinary differential equations exhibiting heteroclinic tangencies for a dense subset of parameters. We use this to find vector fields C2C^2-close to an element of the family exhibiting a tangency, for which the set of solutions with historic behaviour contains an open set. This provides an affirmative answer to Taken's Last Problem (F. Takens (2008) Nonlinearity, 21(3) T33--T36). A limited solution with historic behaviour is one for which the time averages do not converge as time goes to infinity. Takens' problem asks for dynamical systems where historic behaviour occurs persistently for initial conditions in a set with positive Lebesgue measure. The family appears in the unfolding of a degenerate differential equation whose flow has an asymptotically stable heteroclinic cycle involving two-dimensional connections of non-trivial periodic solutions. We show that the degenerate problem also has historic behaviour, since for an open set of initial conditions starting near the cycle, the time averages approach the boundary of a polygon whose vertices depend on the centres of gravity of the periodic solutions and their Floquet multipliers. We illustrate our results with an explicit example where historic behaviour arises C2C^2-close of a SO(2)\textbf{SO(2)}-equivariant vector field

    Aspects of Bifurcation Theory for Piecewise-Smooth, Continuous Systems

    Full text link
    Systems that are not smooth can undergo bifurcations that are forbidden in smooth systems. We review some of the phenomena that can occur for piecewise-smooth, continuous maps and flows when a fixed point or an equilibrium collides with a surface on which the system is not smooth. Much of our understanding of these cases relies on a reduction to piecewise linearity near the border-collision. We also review a number of codimension-two bifurcations in which nonlinearity is important.Comment: pdfLaTeX, 9 figure

    Statistical properties of Lorenz like flows, recent developments and perspectives

    Full text link
    We comment on mathematical results about the statistical behavior of Lorenz equations an its attractor, and more generally to the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statisitcal behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated to the existence of physical measures: \emph{in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure}. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors.Comment: 40 pages; 10 figures; Keywords: sensitive dependence on initial conditions, physical measure, singular-hyperbolicity, expansiveness, robust attractor, robust chaotic flow, positive Lyapunov exponent, large deviations, hitting and recurrence times. Minor typos corrected and precise acknowledgments of financial support added. To appear in Int J of Bif and Chaos in App Sciences and Engineerin
    • …
    corecore