74 research outputs found

    Prediction-error of Prediction Error (PPE)-based Reversible Data Hiding

    Full text link
    This paper presents a novel reversible data hiding (RDH) algorithm for gray-scaled images, in which the prediction-error of prediction error (PPE) of a pixel is used to carry the secret data. In the proposed method, the pixels to be embedded are firstly predicted with their neighboring pixels to obtain the corresponding prediction errors (PEs). Then, by exploiting the PEs of the neighboring pixels, the prediction of the PEs of the pixels can be determined. And, a sorting technique based on the local complexity of a pixel is used to collect the PPEs to generate an ordered PPE sequence so that, smaller PPEs will be processed first for data embedding. By reversibly shifting the PPE histogram (PPEH) with optimized parameters, the pixels corresponding to the altered PPEH bins can be finally modified to carry the secret data. Experimental results have implied that the proposed method can benefit from the prediction procedure of the PEs, sorting technique as well as parameters selection, and therefore outperform some state-of-the-art works in terms of payload-distortion performance when applied to different images.Comment: There has no technical difference to previous versions, but rather some minor word corrections. A 2-page summary of this paper was accepted by ACM IH&MMSec'16 "Ongoing work session". My homepage: hzwu.github.i

    Pixel grouping of digital images for reversible data hiding

    Get PDF
    Pixel Grouping (PG) of digital images has been a key consideration in recent development of the Reversible Data Hiding (RDH) schemes. While a PG kernel with neighborhood pixels helps compute image groups for better embedding rate-distortion performance, only horizontal neighborhood pixel group of size 1×3 has so far been considered. In this paper, we formulate PG kernels of sizes 3×1, 2×3 and 3×2 and investigate their effect on the rate-distortion performance of a prominent PG-based RDH scheme. Specially, a kernel of size 3×2 (or 2×3) that creates a pair of pixel-trios having triangular shape and offers a greater possible correlation among the pixels. This kernel thus can be better utilized for improving a PG-based RDH scheme. Considering this, we develop and present an improved PG-based RDH scheme and the computational models of its key processes. Experimental results demonstrated that our proposed RDH scheme offers reasonably better  embedding rate-distortion performance than the original scheme

    An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images

    Get PDF
    International audienceReversible data hiding in encrypted images (RDHEI) is an effective technique to embed data in the encrypted domain. An original image is encrypted with a secret key and during or after its transmission, it is possible to embed additional information in the encrypted image, without knowing the encryp-tion key or the original content of the image. During the decoding process, the secret message can be extracted and the original image can be reconstructed. In the last few years, RDHEI has started to draw research interest. Indeed, with the development of cloud computing, data privacy has become a real issue. However, none of the existing methods allow us to hide a large amount of information in a reversible manner. In this paper, we propose a new reversible method based on MSB (most significant bit) prediction with a very high capacity. We present two approaches, these are: high capacity reversible data hiding approach with correction of prediction errors and high capacity reversible data hiding approach with embedded prediction errors. With this method, regardless of the approach used, our results are better than those obtained with current state of the art methods, both in terms of reconstructed image quality and embedding capacity

    Reversible Watermarking Using Prediction-Error Expansion and Extreme Learning Machine

    Get PDF
    Currently, the research for reversible watermarking focuses on the decreasing of image distortion. Aiming at this issue, this paper presents an improvement method to lower the embedding distortion based on the prediction-error expansion (PE) technique. Firstly, the extreme learning machine (ELM) with good generalization ability is utilized to enhance the prediction accuracy for image pixel value during the watermarking embedding, and the lower prediction error results in the reduction of image distortion. Moreover, an optimization operation for strengthening the performance of ELM is taken to further lessen the embedding distortion. With two popular predictors, that is, median edge detector (MED) predictor and gradient-adjusted predictor (GAP), the experimental results for the classical images and Kodak image set indicate that the proposed scheme achieves improvement for the lowering of image distortion compared with the classical PE scheme proposed by Thodi et al. and outperforms the improvement method presented by Coltuc and other existing approaches

    A Study on Reversible Data Hiding Technique Based on Three-Dimensional Prediction-Error Histogram Modification and a Multilayer Perceptron

    Get PDF
    [[abstract]]In the past few years, with the development of information technology and the focus on information security, many studies have gradually been aimed at data hiding technology. The embedding and extraction algorithms are mainly used by the technology to hide the data that requires secret transmission into a multimedia carrier so that the data transmission cannot be realized to achieve secure communication. Among them, reversible data hiding (RDH) is a technology for the applications that demand the secret data extraction as well as the original carrier recovery without distortion, such as remote medical diagnosis or military secret transmission. In this work, we hypothesize that the RDH performance can be enhanced by a more accurate pixel value predictor. We propose a new RDH scheme of prediction-error expansion (PEE) based on a multilayer perceptron, which is an extensively used artificial neural network in plenty of applications. The scheme utilizes the correlation between image pixel values and their adjacent pixels to obtain a well-trained multilayer perceptron so that we are capable of achieving more accurate pixel prediction results. Our data mapping method based on the three-dimensional prediction-error histogram modification uses all eight octants in the three-dimensional space for secret data embedding. The experimental results of our RDH scheme show that the embedding capacity greatly increases and the image quality is still well maintained.[[sponsorship]]科技部 MOST 110-2221-E-005 -045, MOST 110-2222-E-032-002-MY2,[[notice]]補正完

    DCT-Based Image Feature Extraction and Its Application in Image Self-Recovery and Image Watermarking

    Get PDF
    Feature extraction is a critical element in the design of image self-recovery and watermarking algorithms and its quality can have a big influence on the performance of these processes. The objective of the work presented in this thesis is to develop an effective methodology for feature extraction in the discrete cosine transform (DCT) domain and apply it in the design of adaptive image self-recovery and image watermarking algorithms. The methodology is to use the most significant DCT coefficients that can be at any frequency range to detect and to classify gray level patterns. In this way, gray level variations with a wider range of spatial frequencies can be looked into without increasing computational complexity and the methodology is able to distinguish gray level patterns rather than the orientations of simple edges only as in many existing DCT-based methods. The proposed image self-recovery algorithm uses the developed feature extraction methodology to detect and classify blocks that contain significant gray level variations. According to the profile of each block, the critical frequency components representing the specific gray level pattern of the block are chosen for encoding. The code lengths are made variable depending on the importance of these components in defining the block’s features, which makes the encoding of critical frequency components more precise, while keeping the total length of the reference code short. The proposed image self-recovery algorithm has resulted in remarkably shorter reference codes that are only 1/5 to 3/5 of those produced by existing methods, and consequently a superior visual quality in the embedded images. As the shorter codes contain the critical image information, the proposed algorithm has also achieved above average reconstruction quality for various tampering rates. The proposed image watermarking algorithm is computationally simple and designed for the blind extraction of the watermark. The principle of the algorithm is to embed the watermark in the locations where image data alterations are the least visible. To this end, the properties of the HVS are used to identify the gray level image features of such locations. The characteristics of the frequency components representing these features are identifying by applying the DCT-based feature extraction methodology developed in this thesis. The strength with which the watermark is embedded is made adaptive to the local gray level characteristics. Simulation results have shown that the proposed watermarking algorithm results in significantly higher visual quality in the watermarked images than that of the reported methods with a difference in PSNR of about 2.7 dB, while the embedded watermark is highly robustness against JPEG compression even at low quality factors and to some other common image processes. The good performance of the proposed image self-recovery and watermarking algorithms is an indication of the effectiveness of the developed feature extraction methodology. This methodology can be applied in a wide range of applications and it is suitable for any process where the DCT data is available
    • …
    corecore