1,411 research outputs found

    Utility-based Allocation of Resources to Virtual Machines in Cloud Computing

    Get PDF
    In recent years, cloud computing has gained a wide spread use as a new computing model that offers elastic resources on demand, in a pay-as-you-go fashion. One important goal of a cloud provider is dynamic allocation of Virtual Machines (VMs) according to workload changes in order to keep application performance to Service Level Agreement (SLA) levels, while reducing resource costs. The problem is to find an adequate trade-off between the two conflicting objectives of application performance and resource costs. In this dissertation, resource allocation solutions for this trade-off are proposed by expressing application performance and resource costs in a utility function. The proposed solutions allocate VM resources at the global data center level and at the local physical machine level by optimizing the utility function. The utility function, given as the difference between performance and costs, represents the profit of the cloud provider and offers the possibility to capture in a flexible and natural way the performance-cost trade-off. For global level resource allocation, a two-tier resource management solution is developed. In the first tier, local node controllers are located that dynamically allocate resource shares to VMs, so to maximize a local node utility function. In the second tier, there is a global controller that makes VM live migration decisions in order to maximize a global utility function. Experimental results show that optimizing the global utility function by changing the number of physical nodes according to workload maintains the performance at acceptable levels while reducing costs. To allocate multiple resources at the local physical machine level, a solution based on feed-back control theory and utility function optimization is proposed. This dynamically allocates shares to multiple resources of VMs such as CPU, memory, disk and network I/O bandwidth. In addressing the complex non-linearities that exist in shared virtualized infrastructures between VM performance and resource allocations, a solution is proposed that allocates VM resources to optimize a utility function based on application performance and power modelling. An Artificial Neural Network (ANN) is used to build an on- line model of the relationships between VM resource allocations and application performance, and another one between VM resource allocations and physical machine power. To cope with large utility optimization times in the case of an increased number of VMs, a distributed resource manager is proposed. It consists of several ANNs, each responsible for modelling and resource allocation of one VM, while exchanging information with other ANNs for coordinating resource allocations. Experiments, in simulated and realistic environments, show that the distributed ANN resource manager achieves better performance-power trade-offs than a centralized version and a distributed non-coordinated resource manager. To deal with the difficulty of building an accurate online application model and long model adaptation time, a solution that offers model-free resource management based on fuzzy control is proposed. It optimizes a utility function based on a hill-climbing search heuristic implemented as fuzzy rules. To cope with long utility optimization time in the case of an increased number of VMs, a multi-agent fuzzy controller is developed where each agent, in parallel with others, optimizes its own local utility function. The fuzzy control approach eliminates the need to build a model beforehand and provides a robust solution even for noisy measurements. Experimental results show that the multi-agent fuzzy controller performs better in terms of utility value than a centralized fuzzy control version and a state-of-the-art adaptive optimal control approach, especially for an increased number of VMs. Finally, to address some of the problems of reactive VM resource allocation approaches, a proactive resource allocation solution is proposed. This approach decides on VM resource allocations based on resource demand prediction, using a machine learning technique called Support Vector Machine (SVM). To deal with interdependencies between VMs of the same multi-tier application, cross- correlation demand prediction of multiple resource usage time series of all VMs of the multi-tier application is applied. As experiments show, this results in improved prediction accuracy and application performance

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Auto-scaling techniques for cloud-based Complex Event Processing

    Get PDF
    One key topic in cloud computing is elasticity, which is the ability of the cloud environment to timely adapt the resource assignment along with the workload demand. According to cloud on-demand model, the infrastructure should be able to scale up and down to unpredictable workloads, in order to achieve both a guaranteed service level and cost efficiency. This work addresses the cloud elasticity problem, with particular reference to the Complex Event Processing (CEP) systems. CEP systems are designed to process large volumes of event-driven data streams and continuously provide results with a low latency and in real-time. CEP systems need to adapt to changing query and events loads. Because of the high computational requirements and varying loads, CEP are distributed system and running on cloud infrastructures. In this work we review the cloud computing auto-scaling solutions, and study their suit- ability in the CEP model. We implement some solutions in a CEP prototype and evaluate the experimental results

    Machine Learning Algorithms for Provisioning Cloud/Edge Applications

    Get PDF
    Mención Internacional en el título de doctorReinforcement Learning (RL), in which an agent is trained to make the most favourable decisions in the long run, is an established technique in artificial intelligence. Its popularity has increased in the recent past, largely due to the development of deep neural networks spawning deep reinforcement learning algorithms such as Deep Q-Learning. The latter have been used to solve previously insurmountable problems, such as playing the famed game of “Go” that previous algorithms could not. Many such problems suffer the curse of dimensionality, in which the sheer number of possible states is so overwhelming that it is impractical to explore every possible option. While these recent techniques have been successful, they may not be strictly necessary or practical for some applications such as cloud provisioning. In these situations, the action space is not as vast and workload data required to train such systems is not as widely shared, as it is considered commercialy sensitive by the Application Service Provider (ASP). Given that provisioning decisions evolve over time in sympathy to incident workloads, they fit into the sequential decision process problem that legacy RL was designed to solve. However because of the high correlation of time series data, states are not independent of each other and the legacy Markov Decision Processes (MDPs) have to be cleverly adapted to create robust provisioning algorithms. As the first contribution of this thesis, we exploit the knowledge of both the application and configuration to create an adaptive provisioning system leveraging stationary Markov distributions. We then develop algorithms that, with neither application nor configuration knowledge, solve the underlying Markov Decision Process (MDP) to create provisioning systems. Our Q-Learning algorithms factor in the correlation between states and the consequent transitions between them to create provisioning systems that do not only adapt to workloads, but can also exploit similarities between them, thereby reducing the retraining overhead. Our algorithms also exhibit convergence in fewer learning steps given that we restructure the state and action spaces to avoid the curse of dimensionality without the need for the function approximation approach taken by deep Q-Learning systems. A crucial use-case of future networks will be the support of low-latency applications involving highly mobile users. With these in mind, the European Telecommunications Standards Institute (ETSI) has proposed the Multi-access Edge Computing (MEC) architecture, in which computing capabilities can be located close to the network edge, where the data is generated. Provisioning for such applications therefore entails migrating them to the most suitable location on the network edge as the users move. In this thesis, we also tackle this type of provisioning by considering vehicle platooning or Cooperative Adaptive Cruise Control (CACC) on the edge. We show that our Q-Learning algorithm can be adapted to minimize the number of migrations required to effectively run such an application on MEC hosts, which may also be subject to traffic from other competing applications.This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Antonio Fernández Anta.- Secretario: Diego Perino.- Vocal: Ilenia Tinnirell

    Zero-touch realization of Pervasive Artificial Intelligence-as-a-service in 6G networks

    Full text link
    The vision of the upcoming 6G technologies, characterized by ultra-dense network, low latency, and fast data rate is to support Pervasive AI (PAI) using zero-touch solutions enabling self-X (e.g., self-configuration, self-monitoring, and self-healing) services. However, the research on 6G is still in its infancy, and only the first steps have been taken to conceptualize its design, investigate its implementation, and plan for use cases. Toward this end, academia and industry communities have gradually shifted from theoretical studies of AI distribution to real-world deployment and standardization. Still, designing an end-to-end framework that systematizes the AI distribution by allowing easier access to the service using a third-party application assisted by a zero-touch service provisioning has not been well explored. In this context, we introduce a novel platform architecture to deploy a zero-touch PAI-as-a-Service (PAIaaS) in 6G networks supported by a blockchain-based smart system. This platform aims to standardize the pervasive AI at all levels of the architecture and unify the interfaces in order to facilitate the service deployment across application and infrastructure domains, relieve the users worries about cost, security, and resource allocation, and at the same time, respect the 6G stringent performance requirements. As a proof of concept, we present a Federated Learning-as-a-service use case where we evaluate the ability of our proposed system to self-optimize and self-adapt to the dynamics of 6G networks in addition to minimizing the users' perceived costs.Comment: IEEE Communications Magazin
    corecore