32 research outputs found

    Sparse Hopsets in Congested Clique

    Get PDF
    We give the first Congested Clique algorithm that computes a sparse hopset with polylogarithmic hopbound in polylogarithmic time. Given a graph G=(V,E)G=(V,E), a (β,ϵ)(\beta,\epsilon)-hopset HH with "hopbound" β\beta, is a set of edges added to GG such that for any pair of nodes uu and vv in GG there is a path with at most β\beta hops in GHG \cup H with length within (1+ϵ)(1+\epsilon) of the shortest path between uu and vv in GG. Our hopsets are significantly sparser than the recent construction of Censor-Hillel et al. [6], that constructs a hopset of size O~(n3/2)\tilde{O}(n^{3/2}), but with a smaller polylogarithmic hopbound. On the other hand, the previously known constructions of sparse hopsets with polylogarithmic hopbound in the Congested Clique model, proposed by Elkin and Neiman [10],[11],[12], all require polynomial rounds. One tool that we use is an efficient algorithm that constructs an \ell-limited neighborhood cover, that may be of independent interest. Finally, as a side result, we also give a hopset construction in a variant of the low-memory Massively Parallel Computation model, with improved running time over existing algorithms

    Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation (distance oracles, distance sketches, etc.) have been extensively studied, and are particularly well studied in centralized models and classical distributed models such as CONGEST. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. We provide efficient constructions in both of these models, but our core results are for MPC. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use to construct distance sketches are an MPC construction of the hopsets of [Elkin and Neiman, 2016]. This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting

    Brief Announcement: Massively Parallel Approximate Distance Sketches

    Get PDF
    Data structures that allow efficient distance estimation have been extensively studied both in centralized models and classical distributed models. We initiate their study in newer (and arguably more realistic) models of distributed computation: the Congested Clique model and the Massively Parallel Computation (MPC) model. In MPC we give two main results: an algorithm that constructs stretch/space optimal distance sketches but takes a (small) polynomial number of rounds, and an algorithm that constructs distance sketches with worse stretch but that only takes polylogarithmic rounds. Along the way, we show that other useful combinatorial structures can also be computed in MPC. In particular, one key component we use is an MPC construction of the hopsets of Elkin and Neiman (2016). This result has additional applications such as the first polylogarithmic time algorithm for constant approximate single-source shortest paths for weighted graphs in the low memory MPC setting

    (1 + )-Approximate shortest paths in dynamic streams

    Get PDF
    Computing approximate shortest paths in the dynamic streaming setting is a fundamental challenge that has been intensively studied. Currently existing solutions for this problem either build a sparse multiplicative spanner of the input graph and compute shortest paths in the spanner offline, or compute an exact single source BFS tree. Solutions of the first type are doomed to incur a stretch-space tradeoff of 2−1 versus n1+1/, for an integer parameter . (In fact, existing solutions also incur an extra factor of 1 + in the stretch for weighted graphs, and an additional factor of logO(1) n in the space.) The only existing solution of the second type uses n1/2−O(1/) passes over the stream (for space O(n1+1/)), and applies only to unweighted graphs. In this paper we show that (1+)-approximate single-source shortest paths can be computed with ˜O (n1+1/) space using just constantly many passes in unweighted graphs, and polylogarithmically many passes in weighted graphs. Moreover, the same result applies for multi-source shortest paths, as long as the number of sources is O(n1/). We achieve these results by devising efficient dynamic streaming constructions of (1 + , )-spanners and hopsets. On our way to these results, we also devise a new dynamic streaming algorithm for the 1-sparse recovery problem. Even though our algorithm for this task is slightly inferior to the existing algorithms of [26, 11], we believe that it is of independent interest. 2012 ACM Subject Classification Theory of computation ! Streaming models; Theory of computation ! Streaming, sublinear and near linear time algorithms; Theory of computation ! Shortest paths; Theory of computation ! Sparsification and spanner

    Distributed Exact Shortest Paths in Sublinear Time

    Full text link
    The distributed single-source shortest paths problem is one of the most fundamental and central problems in the message-passing distributed computing. Classical Bellman-Ford algorithm solves it in O(n)O(n) time, where nn is the number of vertices in the input graph GG. Peleg and Rubinovich (FOCS'99) showed a lower bound of Ω~(D+n)\tilde{\Omega}(D + \sqrt{n}) for this problem, where DD is the hop-diameter of GG. Whether or not this problem can be solved in o(n)o(n) time when DD is relatively small is a major notorious open question. Despite intensive research \cite{LP13,N14,HKN15,EN16,BKKL16} that yielded near-optimal algorithms for the approximate variant of this problem, no progress was reported for the original problem. In this paper we answer this question in the affirmative. We devise an algorithm that requires O((nlogn)5/6)O((n \log n)^{5/6}) time, for D=O(nlogn)D = O(\sqrt{n \log n}), and O(D1/3(nlogn)2/3)O(D^{1/3} \cdot (n \log n)^{2/3}) time, for larger DD. This running time is sublinear in nn in almost the entire range of parameters, specifically, for D=o(n/log2n)D = o(n/\log^2 n). For the all-pairs shortest paths problem, our algorithm requires O(n5/3log2/3n)O(n^{5/3} \log^{2/3} n) time, regardless of the value of DD. We also devise the first algorithm with non-trivial complexity guarantees for computing exact shortest paths in the multipass semi-streaming model of computation. From the technical viewpoint, our algorithm computes a hopset G"G" of a skeleton graph GG' of GG without first computing GG' itself. We then conduct a Bellman-Ford exploration in GG"G' \cup G", while computing the required edges of GG' on the fly. As a result, our algorithm computes exactly those edges of GG' that it really needs, rather than computing approximately the entire GG'

    Exploiting Hopsets: Improved Distance Oracles for Graphs of Constant Highway Dimension and Beyond

    Get PDF
    For fixed h >= 2, we consider the task of adding to a graph G a set of weighted shortcut edges on the same vertex set, such that the length of a shortest h-hop path between any pair of vertices in the augmented graph is exactly the same as the original distance between these vertices in G. A set of shortcut edges with this property is called an exact h-hopset and may be applied in processing distance queries on graph G. In particular, a 2-hopset directly corresponds to a distributed distance oracle known as a hub labeling. In this work, we explore centralized distance oracles based on 3-hopsets and display their advantages in several practical scenarios. In particular, for graphs of constant highway dimension, and more generally for graphs of constant skeleton dimension, we show that 3-hopsets require exponentially fewer shortcuts per node than any previously described distance oracle, and also offer a speedup in query time when compared to simple oracles based on a direct application of 2-hopsets. Finally, we consider the problem of computing minimum-size h-hopset (for any h >= 2) for a given graph G, showing a polylogarithmic-factor approximation for the case of unique shortest path graphs. When h=3, for a given bound on the space used by the distance oracle, we provide a construction of hopset achieving polylog approximation both for space and query time compared to the optimal 3-hopset oracle given the space bound
    corecore