53 research outputs found

    Oscillations and temporal signalling in cells

    Get PDF
    The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration, using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show "ultradian" oscillations, with time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NFkB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour

    Stability of Systems with Stochastic Delays and Applications to Genetic Regulatory Networks

    Get PDF
    The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability charts that are obtained via semidiscretization. The theoretical methods are applied to simple gene regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability of steady protein production

    Oscillations and temporal signalling in cells

    Get PDF
    ArXiv pre-print: http://arxiv.org/abs/q-bio/0703047.-- Final full-text version of the paper available at: http://dx.doi.org/10.1088/1478-3975/4/2/R01.PMID: 17664651The development of new techniques to quantitatively measure gene expression in cells has shed light on a number of systems that display oscillations in protein concentration. Here we review the different mechanisms which can produce oscillations in gene expression or protein concentration using a framework of simple mathematical models. We focus on three eukaryotic genetic regulatory networks which show ultradian oscillations, with a time period of the order of hours, and involve, respectively, proteins important for development (Hes1), apoptosis (p53) and immune response (NF-κB). We argue that underlying all three is a common design consisting of a negative feedback loop with time delay which is responsible for the oscillatory behaviour.SK, MHJ and KS acknowledge support from the Danish National Research Foundation and Villum Kann Rasmussen Foundation. GT acknowledges support from the FIRB 2003 program of the Italian Ministry for University and Scientific Research

    Mathematical modelling of p53 signalling during DNA damage response: a survey

    Get PDF
    No gene has garnered more interest than p53 since its discovery over 40 years ago. In the last two decades, thanks to seminal work from Uri Alon and Ghalit Lahav, p53 has defined a truly synergistic topic in the field of mathematical biology, with a rich body of research connecting mathematic endeavour with experimental design and data. In this review we survey and distill the extensive literature of mathematical models of p53. Specifically, we focus on models which seek to reproduce the oscillatory dynamics of p53 in response to DNA damage. We review the standard modelling approaches used in the field categorising them into three types: time delay models, spatial models and coupled negative-positive feedback models, providing sample model equations and simulation results which show clear oscillatory dynamics. We discuss the interplay between mathematics and biology and show how one informs the other; the deep connections between the two disciplines has helped to develop our understanding of this complex gene and paint a picture of its dynamical response. Although yet more is to be elucidated, we offer the current state-of-the-art understanding of p53 response to DNA damage

    Stability of Systems with Stochastic Delays and Applications to Genetic Regulatory Networks

    Get PDF
    The dynamics of systems with stochastically varying time delays are investigated in this paper. It is shown that the mean dynamics can be used to derive necessary conditions for the stability of equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive sufficient conditions for almost sure stability of equilibria. The results are summarized using stability charts that are obtained via semidiscretization. The theoretical methods are applied to simple gene regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability of steady protein production

    Robust dynamical pattern formation from a multifunctional minimal genetic circuit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A practical problem during the analysis of natural networks is their complexity, thus the use of synthetic circuits would allow to unveil the natural mechanisms of operation. Autocatalytic gene regulatory networks play an important role in shaping the development of multicellular organisms, whereas oscillatory circuits are used to control gene expression under variable environments such as the light-dark cycle.</p> <p>Results</p> <p>We propose a new mechanism to generate developmental patterns and oscillations using a minimal number of genes. For this, we design a synthetic gene circuit with an antagonistic self-regulation to study the spatio-temporal control of protein expression. Here, we show that our minimal system can behave as a biological clock or memory, and it exhibites an inherent robustness due to a quorum sensing mechanism. We analyze this property by accounting for molecular noise in an heterogeneous population. We also show how the period of the oscillations is tunable by environmental signals, and we study the bifurcations of the system by constructing different phase diagrams.</p> <p>Conclusions</p> <p>As this minimal circuit is based on a single transcriptional unit, it provides a new mechanism based on post-translational interactions to generate targeted spatio-temporal behavior.</p

    Are physiological oscillations 'physiological'?

    Full text link
    Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to summarize evidence that oscillations play critical physiological roles. Oscillatory behavior enables systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic beta cells, glycolytic oscillations are in synchrony with calcium and mitochondrial oscillations to drive pulsatile insulin release, which is pivotal for the liver to regulate blood glucose dynamics. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a rethinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed us in the clinic. A more dynamic approach will enable us to view health and disease through a new light and initiate a paradigm shift in treating diseases, including depression and cancer. This modern synthesis also takes a deeper look into the mechanisms that create, sustain and abolish oscillatory processes, which requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory

    Oscillations in well-mixed, deterministic feedback systems: beyond ring oscillators

    Get PDF
    A ring oscillator is a system in which one species regulates the next, which regulates the next and so on until the last species regulates the first. In addition, the number of the regulations which are negative, and so result in a reduction in the regulated species, is odd, making the overall feedback in the loop negative. In ring oscillators, the probability of oscillations is maximised if the degradation rates of the species are equal. When there is more than one loop in the regulatory network, the dynamics can be more complicated. Here, a systematic way of organising the characteristic equation of ODE models of regulatory networks is provided. This facilitates the identification of Hopf bifurcations. It is shown that the probability of oscillations in non-ring systems is maximised for unequal degradation rates. For example, when there is a ring and a second ring employing a subset of the genes in the first ring, then the probability of oscillations is maximised when the species in the sub-ring degrade more slowly than those outside, for a negative feedback subring. When the sub-ring forms a positive feedback loop, the optimal degradation rates are larger for the species in the sub-ring, provided the positive feedback is not too strong. By contrast, optimal degradation rates are smaller for the species in the sub-ring, when the positive feedback is very strong. Adding a positive feedback loop to a repressilator increases the probability of oscillations, provided the positive feedback is not too strong, whereas adding a negative feedback loop decreases the probability of oscillations. The work is illustrated with numerical simulations of example systems: an autoregulatory gene model in which transcription is downregulated by the protein dimer and three-species and four-species gene regulatory network examples
    • …
    corecore