286 research outputs found

    An opportunistic void avoidance routing protocol for underwater sensor networks

    Get PDF

    Green Communication for Underwater Wireless Sensor Networks: Triangle Metric Based Multi-Layered Routing Protocol

    Full text link
    [EN] In this paper, we propose a non-localization routing protocol for underwater wireless sensor networks (UWSNs), namely, the triangle metric based multi-layered routing protocol (TM2RP). The main idea of the proposed TM2RP is to utilize supernodes along with depth information and residual energy to balance the energy consumption between sensors. Moreover, TM2RP is the first multi-layered and multi-metric pressure routing protocol that considers link quality with residual energy to improve the selection of next forwarding nodes with more reliable and energy-efficient links. The aqua-sim package based on the ns-2 simulator was used to evaluate the performance of the proposed TM2RP. The obtained results were compared to other similar methods such as depth based routing (DBR) and multi-layered routing protocol (MRP). Simulation results showed that the proposed protocol (TM2RP) obtained better outcomes in terms of energy consumption, network lifetime, packet delivery ratio, and end-to-end delay.This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (under grant no. DF-524-156-1441). The authors, therefore, gratefully acknowledge DSR for the technical and financial supportKhasawneh, AM.; Kaiwartya, O.; Lloret, J.; Abuaddous, HY.; Abualigah, L.; Shinwan, MA.; Al-Khasawneh, MA.... (2020). Green Communication for Underwater Wireless Sensor Networks: Triangle Metric Based Multi-Layered Routing Protocol. Sensors. 20(24):1-23. https://doi.org/10.3390/s20247278123202

    Sensor Network Architectures for Monitoring Underwater Pipelines

    Get PDF
    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring

    DOW-PR dolphin and whale pods routing protocol for underwater wireless sensor networks (UWSNs)

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) have intrinsic challenges that include long propagation delays, high mobility of sensor nodes due to water currents, Doppler spread, delay variance, multipath, attenuation and geometric spreading. The existing Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) protocol considers the weighting depth of the two hops in order to select the next Potential Forwarding Node (PFN). To improve the performance of WDFAD-DBR, we propose DOlphin and Whale Pod Routing protocol (DOW-PR). In this scheme, we divide the transmission range into a number of transmission power levels and at the same time select the next PFNs from forwarding and suppressed zones. In contrast to WDFAD-DBR, our scheme not only considers the packet upward advancement, but also takes into account the number of suppressed nodes and number of PFNs at the first and second hops. Consequently, reasonable energy reduction is observed while receiving and transmitting packets. Moreover, our scheme also considers the hops count of the PFNs from the sink. In the absence of PFNs, the proposed scheme will select the node from the suppressed region for broadcasting and thus ensures minimum loss of data. Besides this, we also propose another routing scheme (whale pod) in which multiple sinks are placed at water surface, but one sink is embedded inside the water and is physically connected with the surface sink through high bandwidth connection. Simulation results show that the proposed scheme has high Packet Delivery Ratio (PDR), low energy tax, reduced Accumulated Propagation Distance (APD) and increased the network lifetime

    Self-organizing Fast Routing Protocols for Underwater Acoustic Communications Networks

    Get PDF
    To address this problem, in this thesis we propose a cross-layer proactive routing initialization mechanism that does not require additional measurements and, at the same time, is energy efficient. Two routing protocols are proposed: Self-Organized Fast Routing Protocol for Radial Underwater Networks (SOFRP) for radial topology and Self-organized Proactive Routing Protocol for Non-uniformly Deployed Underwater Networks (SPRINT) for a randomly deployed network. SOFRP is based on the algorithm to recreate a radial topology with a gateway node, such that packets always use the shortest possible path from source to sink, thus minimizing consumed energy. Collisions are avoided as much as possible during the path initialization. The algorithm is suitable for 2D or 3D areas, and automatically adapts to a varying number of nodes. In SPRINT the routing path to the gateway is formed on the basis of the distance, measured by the signal strength received. The data sending node prefers to choose the neighbor node which is closest to it. It is designed to achieve high data throughput and low energy consumption of the nodes. There is a tradeoff between the throughput and the energy consumption: more distance needs more transmission energy, and more relay nodes (hops) to the destination node affects the throughput. Each hop increases the packet delay and decreases the throughput. Hence, energy consumption requires nearest nodes to be chosen as forwarding node whereas the throughput requires farthest node to be selected to minimize the number of hops. Fecha de lectura de Tesis Doctoral: 11 mayo 2020Underwater Wireless Sensor Networks (UWSNs) constitute an emerging technology for marine surveillance, natural disaster alert and environmental monitoring. Unlike terrestrial Wireless Sensor Networks (WSNs), electromagnetic waves cannot propagate more than few meters in water (high absorption rate). However, acoustic waves can travel long distances in underwater. Therefore, acoustic waves are preferred for underwater communications, but they travel very slow compare to EM waves (typical speed in water is 1500 m/s against 2x10^8 m/s for EM waves). This physical effect makes a high propagation delay and cannot be avoided, but the end-to-end packet delay it can be reduced. Routing delay is one of the major factors in end-to-end packet delay. In reactive routing protocols, when a packet arrives to a node, the node takes some time to select the node to which the data packet would be forwarded. We may reduce the routing delay for time-critical applications by using proactive routing protocols. Other two critical issues in UWSNs are determining the position of the nodes and time synchronization. Wireless sensor nodes need to determine the position of the surrounding nodes to select the next node in the path to reach the sink node. A Global Navigation Satellite System (GNSS) cannot be used because of the very short underwater range of the GNSS signal. Timestamping to estimate the distance is possible but the limited mobility of the UWSN nodes and variation in the propagation speed of the acoustic waves make the time synchronization a challenging task. For these reasons, terrestrial WSN protocols cannot be readily used for underwater acoustic networks

    Scalable heterogeneous nodes deployment algorithm for monitoring of underwater pipeline

    Get PDF
    Underwater Wireless Linear Sensor Networks (UW-LSNs) possess unique features as compared to the terrestrial sensor networks for pipeline monitoring. Other than long propagation delays for long range underwater pipelines and high error probability, homogeneous node deployment also makes it harder to detect and locate the pipeline leakage efficiently. Determining the exact leakage position with minimum delay stays a major issue where pipelines length is extremely long and expensive to deploy many underwater sensors. In order to tackle the problem of large scale pipeline monitoring and unreliable underwater link quality, many algorithms have been proposed and even some of them provided good solutions for these issues but the scalable nodes deployments still need focus and prime attention. In order to handle the problem of nodes deployment, we therefore propose a dynamic nodes deployment algorithm where every node in the network is assigned location in a quick and efficient way without needing any localization scheme. It provides an option to handle the heterogeneous types of nodes, distribute topology and mechanism in which new nodes are easily added to the network without affecting the existing network performance. The proposed distributed topology algorithm divides the pipeline length into segments and sub-segments in order to manage the higher delay issue. Normally nodes are randomly deployed for the long range underwater pipeline inspection yet it requires some proper dynamic nodes deployment algorithm assigning unique position to each nod

    Enhanced hop-by-hop routing algorithms for underwater acoustic sensor networks

    Get PDF
    Underwater Acoustic Sensor Network (UW-ASN) is a wireless network infrastructure applicable in deep ocean to sense, collect and transmit information to seashore data collector. Underwater sensor network consists of sensor nodes disposed in different depths, equipped with a low bandwidth acoustic modem and acts collaboratively to route the packet from one node to another. Underwater routing protocols provide route information to underwater sensor nodes to transmit collected information efficiently using an optimal path. Routing protocol related to UW-ASN is identified with the issues of low energy consumption, high end-to-end delay and shorter network lifetime. These are due to the distribution of unnecessary information packet flooding in route establishment, improper selection of next hop neighbour and inefficient routing path generation. This research develops a routing protocol that will be able to control flooding of hello packet at information distribution phase, to calculate link quality and composite metric cost for next hop selection and to regularly update the energy status in order to achieve optimum balance in routing path. The developed protocol is called Distance based Reliable and Energy Efficient (DREE) consists of three schemes. The first scheme is called distance calculation and information distribution scheme that calculates the distance between potential neighbours and distribute the local information in an energy efficient manner. The second scheme is route planning and data forwarding scheme in which a node calculates the link quality towards its neighbours and selects a path based on physical distance, link quality and node energy information. Finally, the third scheme is energy balancing scheme that provides each node with new energy status of its neighbours on regular basis. DREE is compared with a Reliable and Energy Efficient routing protocol (R-ERP2R) and Depth based Routing (DBR) protocol. Simulation shows that DREE reducing energy consumption in the information distribution phase by 187% and 179% compared to R-ERP2R in random and grid topology respectively. DREE achieves higher packet delivery ratio of 96% with a similar end-to-end delay as R-ERP2R. DREE improves packet delivery ratio by 7% and 13% over R-ERP2R and DBR, with 9.3% and 201% less energy consumption respectively in data forwarding phase. Finally, DREE improves network lifetime by 18% and 74.5% compared to R-ERP2R and DBR protocols

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Network performance optimisation using odd and even dual interleaving routing algorithm for oil and gas pipeline networke

    Get PDF
    Wireless Sensor Network (WSN) provide promising and resilient solutions in a broad range of industrial applications, especially in the pipeline of oil and gas midstream pipeline. Such application requires a wide communication coverage area because the pipelines are usually stretched over a long distance. To fit the requirement, the sensor nodes have to be arranged in a linear formation. Performance evaluation has been carried out using reactive (AODV) and proactive (DSDV) routing protocols during the initial phases of the research. The factors causing the overall network performance to degrade as the network density increases are identified. It is mainly due to the load's increment, which will inhabit the packet queue and clog the network. These will result in packet loss, throughput unfairness, higher power consumption, and passive nodes in the network. The AODVEO reactive routing protocol is proposed to reduce the routing instabilities by splitting the traffic into (1) even-path and (2) odd with the consideration of the x-axis. The proposed routing algorithm was then compared to AODV and DSDV routing algorithms in terms of network performance with node deployment of 20,40,60,80,100,120,140,160,180 and 200. The proposed routing algorithm has shown substantial improvements in the delivery ratio (19.07% more), throughput (9 kbps more), fairness index (0.06 more), passive node's presence (30% less), and energy consumption (0.038J less) when compared to AODV on 200 nodes deploymen

    Effective Node Clustering and Data Dissemination In Large-Scale Wireless Sensor Networks

    Get PDF
    The denseness and random distribution of large-scale WSNs makes it quite difficult to replace or recharge nodes. Energy efficiency and management is a major design goal in these networks. In addition, reliability and scalability are two other major goals that have been identified by researchers as necessary in order to further expand the deployment of such networks for their use in various applications. This thesis aims to provide an energy efficient and effective node clustering and data dissemination algorithm in large-scale wireless sensor networks. In the area of clustering, the proposed research prolongs the lifetime of the network by saving energy through the use of node ranking to elect cluster heads, contrary to other existing cluster-based work that selects a random node or the node with the highest energy at a particular time instance as the new cluster head. Moreover, a global knowledge strategy is used to maintain a level of universal awareness of existing nodes in the subject area and to avoid the problem of disconnected or forgotten nodes. In the area of data dissemination, the aim of this research is to effectively manage the data collection by developing an efficient data collection scheme using a ferry node and applying a selective duty cycle strategy to the sensor nodes. Depending on the application, mobile ferries can be used for collecting data in a WSN, especially those that are large in scale, with delay tolerant applications. Unlike data collection via multi-hop forwarding among the sensing nodes, ferries travel across the sensing field to collect data. A ferry-based approach thus eliminates, or minimizes, the need for the multi-hop forwarding of data, and as a result, energy consumption at the nodes will be significantly reduced. This is especially true for nodes that are near the base station as they are used by other nodes to forward data to the base station. MATLAB is used to design, simulate and evaluate the proposed work against the work that has already been done by others by using various performance criteria
    corecore