2,628 research outputs found

    Embedding of Virtual Network Requests over Static Wireless Multihop Networks

    Full text link
    Network virtualization is a technology of running multiple heterogeneous network architecture on a shared substrate network. One of the crucial components in network virtualization is virtual network embedding, which provides a way to allocate physical network resources (CPU and link bandwidth) to virtual network requests. Despite significant research efforts on virtual network embedding in wired and cellular networks, little attention has been paid to that in wireless multi-hop networks, which is becoming more important due to its rapid growth and the need to share these networks among different business sectors and users. In this paper, we first study the root causes of new challenges of virtual network embedding in wireless multi-hop networks, and propose a new embedding algorithm that efficiently uses the resources of the physical substrate network. We examine our algorithm's performance through extensive simulations under various scenarios. Due to lack of competitive algorithms, we compare the proposed algorithm to five other algorithms, mainly borrowed from wired embedding or artificially made by us, partially with or without the key algorithmic ideas to assess their impacts.Comment: 22 page

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst-case efficiency of (1-(1/e)) relative to the optimal node embedding, or VNET embedding if virtual links are mapped to exactly one physical link. This bound is optimal, that is, no better polynomial-time approximation algorithm exists, unless P=NP. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared to existing distributed VNET embedding solutions, and we show how by appropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.CNS-0963974 - National Science Foundationhttp://www.cs.bu.edu/fac/matta/Papers/ToN-CAD.pdfAccepted manuscrip

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    Study, evaluation and contributions to new algorithms for the embedding problem in a network virtualization environment

    Get PDF
    Network virtualization is recognized as an enabling technology for the future Internet. It aims to overcome the resistance of the current Internet to architectural change and to enable a new business model decoupling the network services from the underlying infrastructure. The problem of embedding virtual networks in a substrate network is the main resource allocation challenge in network virtualization and is usually referred to as the Virtual Network Embedding (VNE) problem. VNE deals with the allocation of virtual resources both in nodes and links. Therefore, it can be divided into two sub-problems: Virtual Node Mapping where virtual nodes have to be allocated in physical nodes and Virtual Link Mapping where virtual links connecting these virtual nodes have to be mapped to paths connecting the corresponding nodes in the substrate network. Application of network virtualization relies on algorithms that can instantiate virtualized networks on a substrate infrastructure, optimizing the layout for service-relevant metrics. This class of algorithms is commonly known as VNE algorithms. This thesis proposes a set of contributions to solve the research challenges of the VNE that have not been tackled by the research community. To do that, it performs a deep and comprehensive survey of virtual network embedding. The first research challenge identified is the lack of proposals to solve the virtual link mapping stage of VNE using single path in the physical network. As this problem is NP-hard, existing proposals solve it using well known shortest path algorithms that limit the mapping considering just one constraint. This thesis proposes the use of a mathematical multi-constraint routing framework called paths algebra to solve the virtual link mapping stage. Besides, the thesis introduces a new demand caused by virtual link demands into physical nodes acting as intermediate (hidden) hops in a path of the physical network. Most of the current VNE approaches are centralized. They suffer of scalability issues and provide a single point of failure. In addition, they are not able to embed virtual network requests arriving at the same time in parallel. To solve this challenge, this thesis proposes a distributed, parallel and universal virtual network embedding framework. The proposed framework can be used to run any existing embedding algorithm in a distributed way. Thereby, computational load for embedding multiple virtual networks is spread across the substrate network Energy efficiency is one of the main challenges in future networking environments. Network virtualization can be used to tackle this problem by sharing hardware, instead of requiring dedicated hardware for each instance. Until now, VNE algorithms do not consider energy as a factor for the mapping. This thesis introduces the energy aware VNE where the main objective is to switch off as many network nodes and interfaces as possible by allocating the virtual demands to a consolidated subset of active physical networking equipment. To evaluate and validate the aforementioned VNE proposals, this thesis helped in the development of a software framework called ALgorithms for Embedding VIrtual Networks (ALEVIN). ALEVIN allows to easily implement, evaluate and compare different VNE algorithms according to a set of metrics, which evaluate the algorithms and compute their results on a given scenario for arbitrary parameters

    Low Diameter Graph Decompositions by Approximate Distance Computation

    Get PDF
    In many models for large-scale computation, decomposition of the problem is key to efficient algorithms. For distance-related graph problems, it is often crucial that such a decomposition results in clusters of small diameter, while the probability that an edge is cut by the decomposition scales linearly with the length of the edge. There is a large body of literature on low diameter graph decomposition with small edge cutting probabilities, with all existing techniques heavily building on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is desirable to replace exact SSSP computations with approximate ones. However this imposes a fundamental challenge since the existing constructions of low diameter graph decomposition with small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality, which fails to hold under distance approximation. The current paper overcomes this obstacle by developing a technique termed blurry ball growing. By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain a construction of low diameter decompositions with small edge cutting probabilities which replaces exact SSSP computations by (a small number of) approximate ones. The utility of our approach is showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming models of computation. As an application, we obtain metric tree embedding algorithms in the vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to polylogarithmic factors. Our embeddings have the additional useful property that the tree can be mapped back to the original graph such that each edge is "used" only logaritmically many times, which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into which the graph is embedded
    corecore