15 research outputs found

    Analytical modelling solution of producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization

    Optimal broadcast strategy-based producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking is a consumer-driven network that supports content consumer mobility due to the nature of in-network catching. The catching suppressed unnecessary Interest packets losses by providing an immediate copy of the data and consumer-driven nature influencedthe mobile consumer to resend unsatisfied Interest packet immediately after the handoff. Once the producer moves to a new location, the name prefix changed automatically after handoff to the new router or point of attachment. The entire network lacks the knowledge of producer movement unless if the producer announces its new prefix to update the FIBs of intermediate routers. Lack of producer’s movement knowledge causes an increase of handoff latency, signaling overhead cost, Interests packets losses, poor utilization of bandwidth and packets delivery. Therefore, there is needs to provide substantial producer mobility support to minimize the handoff latency, handoff signaling overhead cost, reduce the unnecessary Interest packets loss to improve data packets delivery once a content producer relocated. In this paper, broadcasting strategy is introduced to facilitate the handoff procedures and update the intermediate routers about the producer movement. Hence, analytical investigation result of this paper addresses the deficiency of Kite scheme by minimizing handoff signaling cost and provides data path optimization after the handoff

    NDNSD: Service Publishing and Discovery in NDN

    Get PDF
    Service discovery is one of the crucial components of modern applications. With the advent of several new systems such as IoT, edge, cloud, etc the world is connected more than ever and smart devices are creeping towards every nook and corner of our surroundings. Not only the new systems are emerging but also the communication pattern is evolving i.e. from one-to-one (host-host) to many-to-many (distributed application, IoT). The definition of service has also changed over time. Unlike their meaning in the past as programs running on some machines, services today can be sensor devices collecting data, mobile devices offering computing service, or it can even be a piece of data generated by some system. To satisfy the changing dynamics and heterogeneity of the services and the demand of these evolving architectures several new protocols are developed on top of the TCP/IP stack. Nonetheless, the fundamental weakness of host-centric TCP/IP to support the need for distributed application (IoT, edge) and many-to-many communication (e.g. publisher-subscriber) have induced several weaknesses in the system and have made it more fragile. Named Data Networking (NDN) is an information-centric networking architecture that does the communication over signed, named content objects. Its pub-sub style of communication, data-centric security at the network layer, in-network caching, etc provides numerous benefits to modern systems and tries to overcome the shortcoming of TCP/IP. In this thesis, we propose NDNSD – a fully distributed, scalable, and general-purpose, service discovery protocol for information-centric architecture/NDN. It is developed on top of the synchronization protocol (sync) and offers publisher-subscriber API for service publishing and discovery. We present several design features of NDNSD and also establish how it is best suited for modern systems. We also introduce the concept of service-info and how it can be combined with sync and NDN hierarchical names to make service discovery generic. Finally, To substantiate our argument, we design, implement, and evaluate our protocol, and also provide some use-cases (e.g. Building Management System) to show how service discovery can be beneficial
    corecore