5,695 research outputs found

    Research on Wireless Multi-hop Networks: Current State and Challenges

    Full text link
    Wireless multi-hop networks, in various forms and under various names, are being increasingly used in military and civilian applications. Studying connectivity and capacity of these networks is an important problem. The scaling behavior of connectivity and capacity when the network becomes sufficiently large is of particular interest. In this position paper, we briefly overview recent development and discuss research challenges and opportunities in the area, with a focus on the network connectivity.Comment: invited position paper to International Conference on Computing, Networking and Communications, Hawaii, USA, 201

    On Leveraging Partial Paths in Partially-Connected Networks

    Full text link
    Mobile wireless network research focuses on scenarios at the extremes of the network connectivity continuum where the probability of all nodes being connected is either close to unity, assuming connected paths between all nodes (mobile ad hoc networks), or it is close to zero, assuming no multi-hop paths exist at all (delay-tolerant networks). In this paper, we argue that a sizable fraction of networks lies between these extremes and is characterized by the existence of partial paths, i.e. multi-hop path segments that allow forwarding data closer to the destination even when no end-to-end path is available. A fundamental issue in such networks is dealing with disruptions of end-to-end paths. Under a stochastic model, we compare the performance of the established end-to-end retransmission (ignoring partial paths), against a forwarding mechanism that leverages partial paths to forward data closer to the destination even during disruption periods. Perhaps surprisingly, the alternative mechanism is not necessarily superior. However, under a stochastic monotonicity condition between current v.s. future path length, which we demonstrate to hold in typical network models, we manage to prove superiority of the alternative mechanism in stochastic dominance terms. We believe that this study could serve as a foundation to design more efficient data transfer protocols for partially-connected networks, which could potentially help reducing the gap between applications that can be supported over disconnected networks and those requiring full connectivity.Comment: Extended version of paper appearing at IEEE INFOCOM 2009, April 20-25, Rio de Janeiro, Brazi

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Is There Light at the Ends of the Tunnel? Wireless Sensor Networks for Adaptive Lighting in Road Tunnels

    Get PDF
    Existing deployments of wireless sensor networks (WSNs) are often conceived as stand-alone monitoring tools. In this paper, we report instead on a deployment where the WSN is a key component of a closed-loop control system for adaptive lighting in operational road tunnels. WSN nodes along the tunnel walls report light readings to a control station, which closes the loop by setting the intensity of lamps to match a legislated curve. The ability to match dynamically the lighting levels to the actual environmental conditions improves the tunnel safety and reduces its power consumption. The use of WSNs in a closed-loop system, combined with the real-world, harsh setting of operational road tunnels, induces tighter requirements on the quality and timeliness of sensed data, as well as on the reliability and lifetime of the network. In this work, we test to what extent mainstream WSN technology meets these challenges, using a dedicated design that however relies on wellestablished techniques. The paper describes the hw/sw architecture we devised by focusing on the WSN component, and analyzes its performance through experiments in a real, operational tunnel
    • …
    corecore