181 research outputs found

    Nearest Neighbor Connectivity in Two-Dimensional Multihop MANETs

    Get PDF
    A Mobile Ad Hoc Network (MANET) is characterized to be a network with free, cooperative, and dynamic nodes, self-organized in a random topology, without any kind of infrastructure, where the communication between two nodes usually occurs using multihop paths. The number of hops used in the multihop path is an important metric for the design and performance analysis of routing protocols in MANETs. In this paper, we derive the probability distribution of the hop count of a multihop path between a source node and a destination node, fixed at a known distance from each other, and when a fixed number of nodes are uniformly distributed in a region of interest. This distribution is obtained by the Poisson randomization method. To obtain the multihop path, we propose a novel routing model in which the nearest distance routing protocol (NR) is analyzed. Numerical results are obtained to evaluate the performance of the NR

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Modelling and Performance Evaluation of Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks are characterized by having nodes that are self-organized and cooperative without any kind of infrastructure, being the most promising upgrade of the current telecommunication systems. The mobility and multihop capability of these networks allows the network topology to change rapidly and unpredictably, turning necessary the development of appropriate models to describe the multihop connectivity and the dynamic of multihop paths. The research carried on in this dissertation starts by addressing the multihop connectivity for one-dimensional and two-dimensional ad hoc networks. The hop count probability distributions are derived when the underlying node spatial distribution is drawn from a Poisson process and, by using a Poisson randomization technique, when a fixed number of relay nodes are uniformly distributed in a region of interest. Numerical results illustrate the computation of the hop count probabilities. We then present an analytical framework to characterize the random behavior of a multihop path by means of a piecewise deterministic Markov process. The mean path duration and the path persistence metrics are obtained as the unique solution of a system of integro-differential equations, and a recursive scheme for their computation is provided. Numerical results are presented to illustrate the computation of the metrics and to compare the associated results with independent link approximation result

    Design of an energy-efficient geographic routing protocol for mobile ad-hoc networks

    Get PDF
    Mobile Ad-hoc networks extend communications beyond the limit of infrastructure based networks. Future wireless applications will take advantage of rapidly deployable, self-configuring multi-hop mobile Ad-hoc networks. In order to provide robust performance in mobile Ad-hoc networks and hence cope with dynamic path loss conditions, it is apparent that research and development of energy efficient geographic routing protocols is of great importance. Therefore various mobile Ad-hoc routing protocols have been studied for their different approaches. Forwarding strategies for geographic routing protocols are discussed and there is a particular focus on the pass loss model used by those routing protocols, the restriction and disadvantage of using such path loss model is then discussed. A novel geographic routing protocol which incorporates both the link quality and relay node location information has been developed to determine an energy efficient route from source to destination. The concepts of a gain region and a relay region to minimize the energy consumption have been proposed to define the area in where the candidate relay nodes will be selected with the minimized hop count. The signalling overhead required by the protocol has been analyzed in various scenarios with different traffic load, node densities and network sizes. Discrete event simulation models are therefore developed to capture the behaviour and characteristics of the operation of the developed routing protocol under different path loss conditions and network scenarios. A non-free space path loss model has been developed with a random loss between the nodes to simulate a realistic path loss scenario in the network. An enhanced signalling process has been designed in order to achieve advanced routing information exchange and assist routing determination. Comparison of simulated characteristics demonstrates the significant improvement of the new routing protocol because of its novel features, the gain region to ensure the deductiono f the energyc onsumptiont,h e relay region to ensuret he forward progress to the destination and hence maintain an optimised hop count. The simulation results showed that the energy consumption under the operation of the developed protocol is 30% of that with a conventionagl eographicarl outing protocol

    Virtual coordinate based techniques for wireless sensor networks: a simulation tool and localization & planarization algorithms

    Get PDF
    2013 Summer.Includes bibliographical references.Wireless sensor Networks (WSNs) are deployments of smart sensor devices for monitoring environmental or physical phenomena. These sensors have the ability to communicate with other sensors within communication range or with a base station. Each sensor, at a minimum, comprises of sensing, processing, transmission, and power units. This thesis focuses on virtual coordinate based techniques in WSNs. Virtual Coordinates (VCs) characterize each node in a network with the minimum hop distances to a set of anchor nodes, as its coordinates. It provides a compelling alternative to some of the localization applications such as routing. Building a WSN testbed is often infeasible and costly. Running real experiments on WSNs testbeds is time consuming, difficult and sometimes not feasible given the scope and size of applications. Simulation is, therefore, the most common approach for developing and testing new protocols and techniques for sensor networks. Though many general and wireless sensor network specific simulation tools are available, no available tool currently provides an intuitive interface or a tool for virtual coordinate based simulations. A simulator called VCSIM is presented which focuses specifically on Virtual Coordinate Space (VCS) in WSNs. With this simulator, a user can easily create WSNs networks of different sizes, shapes, and distributions. Its graphical user interface (GUI) facilitates placement of anchors and generation of VCs. Localization in WSNs is important for several reasons including identification and correlation of gathered data, node addressing, evaluation of nodes' density and coverage, geographic routing, object tracking, and other geographic algorithms. But due to many constraints, such as limited battery power, processing capabilities, hardware costs, and measurement errors, localization still remains a hard problem in WSNs. In certain applications, such as security sensors for intrusion detection, agriculture, land monitoring, and fire alarm sensors in a building, the sensor nodes are always deployed in an orderly fashion, in contrast to random deployments. In this thesis, a novel transformation is presented to obtain position of nodes from VCs in rectangular, hexagonal and triangular grid topologies. It is shown that with certain specific anchor placements, a location of a node can be accurately approximated, if the length of a shortest path in given topology between a node and anchors is equal to length of a shortest path in full topology (i.e. a topology without any voids) between the same node and anchors. These positions are obtained without the need of any extra localization hardware. The results show that more than 90% nodes were able to identify their position in randomly deployed networks of 80% and 85% node density. These positions can then be used for deterministic routing which seems to have better avg. path length compared to geographic routing scheme called "Greedy Perimeter Stateless Routing (GPSR)". In many real world applications, manual deployment is not possible in exact regular rectangular, triangular or hexagonal grids. Due to placement constraint, nodes are often placed with some deviation from ideal grid positions. Because of placement tolerance and due to non-isotropic radio patterns nodes may communicate with more or less number of neighbors than needed and may form cross-links causing non-planar topologies. Extracting planar graph from network topologies is known as network planarization. Network planarization has been an important technique in numerous sensor network protocols--such as GPSR for efficient routing, topology discovery, localization and data-centric storage. Most of the present planarization algorithms are based on location information. In this thesis, a novel network planarization algorithm is presented for rectangular, hexagonal and triangular topologies which do not use location information. The results presented in this thesis show that with placement errors of up to 30%, 45%, and 30% in rectangular, triangular and hexagonal topologies respectively we can obtain good planar topologies without the need of location information. It is also shown that with obtained planar topology more nodes acquire unique VCs

    Chain-based routing protocols in wireless sensor networks: A survey

    Get PDF
    In the last few years, wireless sensor networks )WSN( have become an active area for researchers due to its broad and growing application. However, routing is a critical issue that needs consideration as it directly impacts the performance of WSN.Several protocols have been proposed to address this issue as well as reducing energy consumption and prolong a lifetime of the sensor nodes in WSN.The chain-based is one approach from Hierarchical routing protocols which reduces the energy consumption in WSN. However, a problem arises when the chain has long-link (LL) from the base station (BS). This paper presents a comprehensive survey on chain-base hierarchical routing protocols, in terms of details, who to work, Phases, figures, and the main advantage and disadvantage for each protocol. Furthermore, the characteristics of chain-based routing protocols and the performance metrics that are used in WSN are discussed. Finally, this paper presents open challenges for researchers

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Energy efficient geographic routing robust against location errors

    Get PDF
    Realistic geographic routing algorithms need to ensure quality of services in wireless sensor network applications while being resilient to the inherent localization errors of positioning algorithms. A number of solutions robust against location errors have been proposed in the literature and their design focuses either on a high throughput or on a balanced energy consumption. Ideally, both aspects need to be addressed by the same algorithm, but in most cases, the proposed routing techniques compromise between the two. The present work aims to minimize such a tradeoff and to facilitate a higher packet delivery ratio than similar geographic routing techniques, while still being energy efficient. This is achieved through a novel proposal entitled energy conditioned mean square error algorithm (ECMSE), which makes use of statistical assumptions of Gaussianly distributed location error and Ricianly distributed distances between sensor nodes. In addition, it makes use of an energy efficient feature, which includes information about the energy cost of the forwarding decision. By using a location-error-resilient and distance-based power metric, the ECMSE provides an improved performance in realistic simulations in comparison with other error-coping geographic routing algorithms

    Traffic locality oriented route discovery algorithms for mobile ad hoc networks

    Get PDF
    There has been a growing interest in Mobile Ad hoc Networks (MANETs) motivated by the advances in wireless technology and the range of potential applications that might be realised with such technology. Due to the lack of an infrastructure and their dynamic nature, MANETs demand a new set of networking protocols to harness the full benefits of these versatile communication systems. Great deals of research activities have been devoted to develop on-demand routing algorithms for MANETs. The route discovery processes used in most on-demand routing algorithms, such as the Dynamic Source Routing (DSR) and Ad hoc On-demand Distance Vector (AODV), rely on simple flooding as a broadcasting technique for route discovery. Although simple flooding is simple to implement, it dominates the routing overhead, leading to the well-known broadcast storm problem that results in packet congestion and excessive collisions. A number of routing techniques have been proposed to alleviate this problem, some of which aim to improve the route discovery process by restricting the broadcast of route request packets to only the essential part of the network. Ideally, a route discovery should stop when a receiving node reports a route to the required destination. However, this cannot be achieved efficiently without the use of external resources; such as GPS location devices. In this thesis, a new locality-oriented route discovery approach is proposed and exploited to develop three new algorithms to improve the route discovery process in on-demand routing protocols. The proposal of our algorithms is motivated by the fact that various patterns of traffic locality occur quite naturally in MANETs since groups of nodes communicate frequently with each other to accomplish common tasks. Some of these algorithms manage to reduce end-to-end delay while incurring lower routing overhead compared to some of the existing algorithms such as simple flooding used in AODV. The three algorithms are based on a revised concept of traffic locality in MANETs which relies on identifying a dynamic zone around a source node where the zone radius depends on the distribution of the nodes with which that the source is “mostly” communicating. The traffic locality concept developed in this research form the basis of our Traffic Locality Route Discovery Approach (TLRDA) that aims to improve the routing discovery process in on-demand routing protocols. A neighbourhood region is generated for each active source node, containing “most” of its destinations, thus the whole network being divided into two non-overlapping regions, neighbourhood and beyond-neighbourhood, centred at the source node from that source node prospective. Route requests are processed normally in the neighbourhood region according to the routing algorithm used. However, outside this region various measures are taken to impede such broadcasts and, ultimately, stop them when they have outlived their usefulness. The approach is adaptive where the boundary of each source node’s neighbourhood is continuously updated to reflect the communication behaviour of the source node. TLRDA is the basis for the new three route discovery algorithms; notably: Traffic Locality Route Discovery Algorithm with Delay (TLRDA D), Traffic Locality Route Discovery Algorithm with Chase (TLRDA-C), and Traffic Locality Expanding Ring Search (TL-ERS). In TLRDA-D, any route request that is currently travelling in its source node’s beyond-neighbourhood region is deliberately delayed to give priority to unfulfilled route requests. In TLRDA-C, this approach is augmented by using chase packets to target the route requests associated with them after the requested route has been discovered. In TL-ERS, the search is conducted by covering three successive rings. The first ring covers the source node neighbourhood region and unsatisfied route requests in this ring trigger the generation of the second ring which is double that of the first. Otherwise, the third ring covers the whole network and the algorithm finally resorts to flooding. Detailed performance evaluations are provided using both mathematical and simulation modelling to investigate the performance behaviour of the TLRDA D, TLRDA-C, and TL-ERS algorithms and demonstrate their relative effectiveness against the existing approaches. Our results reveal that TLRDA D and TLRDA C manage to minimize end-to-end packet delays while TLRDA-C and TL-ERS exhibit low routing overhead. Moreover, the results indicate that equipping AODV with our new route discovery algorithms greatly enhance the performance of AODV in terms of end to end delay, routing overhead, and packet loss
    • …
    corecore