44 research outputs found

    New foundations for efficient authentication, commutative cryptography, and private disjointness testing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 105-115).This dissertation presents new constructions and security definitions related to three areas: authentication, cascadable and commutative crytpography, and private set operations. Existing works relevant to each of these areas fall into one of two categories: efficient solutions lacking formal proofs of security or provably-secure, but highly inefficient solutions. This work will bridge this gap by presenting new constructions and definitions that are both practical and provably-secure. The first contribution in the area of efficient authentication is a provably-secure authentication protocol named HB+. The HB+ protocol is efficient enough to be implemented on extremely low-cost devices, or even by a patient human with a coin to flip. The security of HB+ is based on the hardness of a long-standing learning problem that is closely related to coding theory. HB+ is the first authentication protocol that is both practical for low-cost devices, like radio frequency identification (RFID) tags, and provably secure against active adversaries. The second contribution of this work is a new framework for defining and proving the security of cascadable cryptosystems, specifically commutative cryptosystems.(cont.) This new framework addresses a gap in existing security definitions that fail to handle cryptosystems where ciphertexts produced by cascadable encryption and decryption perations may contain some message-independent history. Several cryptosystems, including a new, practical commutative cryptosystem, are proven secure under this new framework. Finally, a new and efficient private disjointness testing construction named HW is offered. Unlike previous constructions, HW is secure in the face of malicious parties, but without the need for random oracles or expensive zero-knowledge protocols. HW is as efficient as previous constructions and may be implemented using standard software libraries. The security of HW is based on a novel use of subgroup assumptions. These assumptions may prove useful in solving many other private set operation problems.by Stephen A. Weis.Ph.D

    Mixed-Technique Multi-Party Computations Composed of Two-Party Computations

    Get PDF
    Protocols for secure multi-party computation are commonly composed of different sub-protocols, combining techniques such as homomorphic encryption, secret or Boolean sharing, and garbled circuits. In this paper, we design a new class of multi-party computation protocols which themselves are composed out of two-party protocols. We integrate both types of compositions, compositions of fully homomorphic encryption and garbled circuits with compositions of multi-party protocols from two-party protocols. As a result, we can construct communication-efficient protocols for special problems. Furthermore, we show how to efficiently ensure the security of composed protocols against malicious adversaries by proving in zero-knowledge that conversions between individual techniques are correct. To demonstrate the usefulness of this approach, we give an example scheme for private set analytics, i.e., private set disjointness. This scheme enjoys lower communication complexity than a solution based on generic multi-party computation and lower computation cost than fully homomorphic encryption. So, our design is more suitable for deployments in wide-area networks, such as the Internet, with many participants or problems with circuits of moderate or high multiplicative depth

    Weakly Extractable One-Way Functions

    Get PDF
    A family of one-way functions is extractable if given a random function in the family, an efficient adversary can only output an element in the image of the function if it knows a corresponding preimage. This knowledge extraction guarantee is particularly powerful since it does not require interaction. However, extractable one-way functions (EFs) are subject to a strong barrier: assuming indistinguishability obfuscation, no EF can have a knowledge extractor that works against all polynomial-size non-uniform adversaries. This holds even for non-black-box extractors that use the adversary’s code. Accordingly, the literature considers either EFs based on non-falsifiable knowledge assumptions, where the extractor is not explicitly given, but it is only assumed to exist, or EFs against a restricted class of adversaries with a bounded non-uniform advice. This falls short of cryptography’s gold standard of security that requires an explicit reduction against non-uniform adversaries of arbitrary polynomial size. Motivated by this gap, we put forward a new notion of weakly extractable one-way functions (WEFs) that circumvents the known barrier. We then prove that WEFs are inextricably connected to the long standing question of three-message zero knowledge protocols. We show that different flavors of WEFs are sufficient and necessary for three-message zero knowledge to exist. The exact flavor depends on whether the protocol is computational or statistical zero knowledge and whether it is publicly or privately verifiable. Combined with recent progress on constructing three message zero-knowledge, we derive a new connection between keyless multi-collision resistance and the notion of incompressibility and the feasibility of non-interactive knowledge extraction. Another interesting corollary of our result is that in order to construct three-message zero knowledge arguments, it suffices to construct such arguments where the honest prover strategy is unbounded

    Flexible and Robust Privacy-Preserving Implicit Authentication

    Full text link
    Implicit authentication consists of a server authenticating a user based on the user's usage profile, instead of/in addition to relying on something the user explicitly knows (passwords, private keys, etc.). While implicit authentication makes identity theft by third parties more difficult, it requires the server to learn and store the user's usage profile. Recently, the first privacy-preserving implicit authentication system was presented, in which the server does not learn the user's profile. It uses an ad hoc two-party computation protocol to compare the user's fresh sampled features against an encrypted stored user's profile. The protocol requires storing the usage profile and comparing against it using two different cryptosystems, one of them order-preserving; furthermore, features must be numerical. We present here a simpler protocol based on set intersection that has the advantages of: i) requiring only one cryptosystem; ii) not leaking the relative order of fresh feature samples; iii) being able to deal with any type of features (numerical or non-numerical). Keywords: Privacy-preserving implicit authentication, privacy-preserving set intersection, implicit authentication, active authentication, transparent authentication, risk mitigation, data brokers.Comment: IFIP SEC 2015-Intl. Information Security and Privacy Conference, May 26-28, 2015, IFIP AICT, Springer, to appea

    Multi Party Distributed Private Matching, Set Disjointness and Cardinality Set Intersection with Information Theoretic Security

    Get PDF
    In this paper, we focus on the specific problems of Private Matching, Set Disjointness and Cardinality Set Intersection in information theoretic settings. Specifically, we give perfectly secure protocols for the above problems in n party settings, tolerating a computational ly unbounded semi-honest adversary, who can passively corrupt at most t < n/2 parties. To the best of our knowledge, these are the first such information theoretically secure protocols in a multi-party setting for all three problems. Previous solutions for Distributed Private Matching and Cardinality Set Intersection were cryptographical ly secure and the previous Set Disjointness solution, though information theoretically secure, is in a two party setting. We also propose a new model for Distributed Private matching which is relevant in a multi-party setting

    Fast and Private Computation of Cardinality of Set Intersection and Union

    Get PDF
    In many everyday scenarios, sensitive information must be shared between parties without complete mutual trust. Private set operations are particularly useful to enable sharing information with privacy, as they allow two or more parties to jointly compute operations on their sets (e.g., intersection, union, etc.), such that only the minimum required amount of information is disclosed. In the last few years, the research community has proposed a number of secure and efficient techniques for Private Set Intersection (PSI), however, somewhat less explored is the problem of computing the magnitude, rather than the contents, of the intersection - we denote this problem as Private Set Intersection Cardinality (PSI-CA). This paper explores a few PSI-CA variations and constructs several protocols that are more efficient than the state-of-the-art

    Privacy-Preserving Distributed Set Intersection *

    Get PDF
    Abstract With the growing demand of databases outsourcing and its security concerns, we investigate privacy-preserving set intersection in a distributed scenario. We propose a one-round protocol for privacy-preserving set intersection based on a combination of secret sharing scheme and homomorphic encryption. We then show that, with an extra permutation performed by each contacted server, the cardinality of set intersection can be computed efficiently. All protocols constructed in this paper are provably secure against an honest-but-curious adversary under the Decisional Diffie-Hellman assumption

    Secure and efficient multiparty private set intersection cardinality

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at http://dx.doi.org/10.3934/amc.2020071In the field of privacy preserving protocols, Private Set Intersection (PSI) plays an important role. In most of the cases, PSI allows two parties to securely determine the intersection of their private input sets, and no other information. In this paper, employing a Bloom filter, we propose a Multiparty Private Set Intersection Cardinality (MPSI-CA), where the number of participants in PSI is not limited to two. The security of our scheme is achieved in the standard model under the Decisional Diffie-Hellman (DDH) assumption against semi-honest adversaries. Our scheme is flexible in the sense that set size of one participant is independent from that of the others. We consider the number of modular exponentiations in order to determine computational complexity. In our construction, communication and computation overheads of each participant is O(vmaxk) except that the complexity of the designated party is O(v1), where vmax is the maximum set size, v1 denotes the set size of the designated party and k is a security parameter. Particularly, our MSPI-CA is the first that incurs linear complexity in terms of set size, namely O(nvmaxk), where n is the number of participants. Further, we extend our MPSI-CA to MPSI retaining all the security attributes and other properties. As far as we are aware of, there is no other MPSI so far where individual computational cost of each participant is independent of the number of participants. Unlike MPSI-CA, our MPSI does not require any kind of broadcast channel as it uses star network topology in the sense that a designated party communicates with everyone else

    Secure and Efficient Multiparty Private Set Intersection Cardinality

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.3934/amc.2020071In the field of privacy preserving protocols, Private Set Intersection (PSI) plays an important role. In most of the cases, PSI allows two parties to securely determine the intersection of their private input sets, and no other information. In this paper, employing a Bloom filter, we propose a Multiparty Private Set Intersection Cardinality (MPSI-CA), where the number of participants in PSI is not limited to two. The security of our scheme is achieved in the standard model under the Decisional Diffie-Hellman (DDH) assumption against semi-honest adversaries. Our scheme is flexible in the sense that set size of one participant is independent from that of the others. We consider the number of modular exponentiations in order to determine computational complexity. In our construction, communication and computation overheads of each participant is O(v max k) except that the complexity of the designated party is O(v1), where v max is the maximum set size, v1 denotes the set size of the designated party and k is a security parameter. Particularly, our MSPI-CA is the first that incurs linear complexity in terms of set size, namely O(nv max k), where n is the number of participants. Further, we extend our MPSI-CA to MPSI retaining all the security attributes and other properties. As far as we are aware of, there is no other MPSI so far where individual computational cost of each participant is independent of the number of participants. Unlike MPSI-CA, our MPSI does not require any kind of broadcast channel as it uses star network topology in the sense that a designated party communicates with everyone else
    corecore