61 research outputs found

    Homomorphism Reconfiguration via Homotopy

    Get PDF
    We consider the following problem for a fixed graph H: given a graph G and two H-colorings of G, i.e. homomorphisms from G to H, can one be transformed into the other by changing one color at a time, maintaining an H-coloring throughout.This is the same as finding a path in the Hom(G,H) complex. For H=K_k this is the problem of finding paths between k-colorings, which was recently shown to be in P for kleq 3 and PSPACE-complete otherwise (Bonsma and Cereceda 2009, Cereceda et al. 2011). We generalize the positive side of this dichotomy by providing an algorithm that solves the problem in polynomial time for any H with no C_4 subgraph. This gives a large class of constraints for which finding solutions to the Constraint Satisfaction Problem is NP-complete, but paths in the solution space can be found in polynomial time. The algorithm uses a characterization of possible reconfiguration sequences (that is, paths in Hom(G,H)), whose main part is a purely topological condition described in terms of the fundamental groupoid of H seen as a topological space

    Homomorphism complexes, reconfiguration, and homotopy for directed graphs

    Full text link
    The neighborhood complex of a graph was introduced by Lov\'asz to provide topological lower bounds on chromatic number. More general homomorphism complexes of graphs were further studied by Babson and Kozlov. Such `Hom complexes' are also related to mixings of graph colorings and other reconfiguration problems, as well as a notion of discrete homotopy for graphs. Here we initiate the detailed study of Hom complexes for directed graphs (digraphs). For any pair of digraphs graphs GG and HH, we consider the polyhedral complex Hom(G,H)\text{Hom}(G,H) that parametrizes the directed graph homomorphisms f:G→Hf: G \rightarrow H. Hom complexes of digraphs have applications in the study of chains in graded posets and cellular resolutions of monomial ideals. We study examples of directed Hom complexes and relate their topological properties to certain graph operations including products, adjunctions, and foldings. We introduce a notion of a neighborhood complex for a digraph and prove that its homotopy type is recovered as the Hom complex of homomorphisms from a directed edge. We establish a number of results regarding the topology of directed neighborhood complexes, including the dependence on directed bipartite subgraphs, a digraph version of the Mycielski construction, as well as vanishing theorems for higher homology. The Hom complexes of digraphs provide a natural framework for reconfiguration of homomorphisms of digraphs. Inspired by notions of directed graph colorings we study the connectivity of Hom(G,Tn)\text{Hom}(G,T_n) for TnT_n a tournament. Finally, we use paths in the internal hom objects of digraphs to define various notions of homotopy, and discuss connections to the topology of Hom complexes.Comment: 34 pages, 10 figures; V2: some changes in notation, clarified statements and proofs, other corrections and minor revisions incorporating comments from referee

    Reconfiguration of Digraph Homomorphisms

    Get PDF
    For a fixed graph H, the H-Recoloring problem asks whether, given two homomorphisms from a graph G to H, one homomorphism can be transformed into the other by changing the image of a single vertex in each step and maintaining a homomorphism to H throughout. The most general algorithmic result for H-Recoloring so far has been proposed by Wrochna in 2014, who introduced a topological approach to obtain a polynomial-time algorithm for any undirected loopless square-free graph H. We show that the topological approach can be used to recover essentially all previous algorithmic results for H-Recoloring and that it is applicable also in the more general setting of digraph homomorphisms. In particular, we show that H-Recoloring admits a polynomial-time algorithm i) if H is a loopless digraph that does not contain a 4-cycle of algebraic girth 0 and ii) if H is a reflexive digraph that contains no triangle of algebraic girth 1 and no 4-cycle of algebraic girth 0

    Embedding right-angled Artin groups into graph braid groups

    Full text link
    We construct an embedding of any right-angled Artin group G(Δ)G(\Delta) defined by a graph Δ\Delta into a graph braid group. The number of strands required for the braid group is equal to the chromatic number of Δ\Delta. This construction yields an example of a hyperbolic surface subgroup embedded in a two strand planar graph braid group.Comment: 8 pages. Final version, appears in Geometriae Dedicata

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    A Dichotomy Theorem for Circular Colouring Reconfiguration

    Get PDF
    The "reconfiguration problem" for circular colourings asks, given two (p,q)(p,q)-colourings ff and gg of a graph GG, is it possible to transform ff into gg by changing the colour of one vertex at a time such that every intermediate mapping is a (p,q)(p,q)-colouring? We show that this problem can be solved in polynomial time for 2≤p/q<42\leq p/q <4 and is PSPACE-complete for p/q≥4p/q\geq 4. This generalizes a known dichotomy theorem for reconfiguring classical graph colourings.Comment: 22 pages, 5 figure
    • …
    corecore