433 research outputs found

    ARPA Whitepaper

    Get PDF
    We propose a secure computation solution for blockchain networks. The correctness of computation is verifiable even under malicious majority condition using information-theoretic Message Authentication Code (MAC), and the privacy is preserved using Secret-Sharing. With state-of-the-art multiparty computation protocol and a layer2 solution, our privacy-preserving computation guarantees data security on blockchain, cryptographically, while reducing the heavy-lifting computation job to a few nodes. This breakthrough has several implications on the future of decentralized networks. First, secure computation can be used to support Private Smart Contracts, where consensus is reached without exposing the information in the public contract. Second, it enables data to be shared and used in trustless network, without disclosing the raw data during data-at-use, where data ownership and data usage is safely separated. Last but not least, computation and verification processes are separated, which can be perceived as computational sharding, this effectively makes the transaction processing speed linear to the number of participating nodes. Our objective is to deploy our secure computation network as an layer2 solution to any blockchain system. Smart Contracts\cite{smartcontract} will be used as bridge to link the blockchain and computation networks. Additionally, they will be used as verifier to ensure that outsourced computation is completed correctly. In order to achieve this, we first develop a general MPC network with advanced features, such as: 1) Secure Computation, 2) Off-chain Computation, 3) Verifiable Computation, and 4)Support dApps' needs like privacy-preserving data exchange

    Cryptography for Bitcoin and friends

    Get PDF
    Numerous cryptographic extensions to Bitcoin have been proposed since Satoshi Nakamoto introduced the revolutionary design in 2008. However, only few proposals have been adopted in Bitcoin and other prevalent cryptocurrencies, whose resistance to fundamental changes has proven to grow with their success. In this dissertation, we introduce four cryptographic techniques that advance the functionality and privacy provided by Bitcoin and similar cryptocurrencies without requiring fundamental changes in their design: First, we realize smart contracts that disincentivize parties in distributed systems from making contradicting statements by penalizing such behavior by the loss of funds in a cryptocurrency. Second, we propose CoinShuffle++, a coin mixing protocol which improves the anonymity of cryptocurrency users by combining their transactions and thereby making it harder for observers to trace those transactions. The core of CoinShuffle++ is DiceMix, a novel and efficient protocol for broadcasting messages anonymously without the help of any trusted third-party anonymity proxies and in the presence of malicious participants. Third, we combine coin mixing with the existing idea to hide payment values in homomorphic commitments to obtain the ValueShuffle protocol, which enables us to overcome major obstacles to the practical deployment of coin mixing protocols. Fourth, we show how to prepare the aforementioned homomorphic commitments for a safe transition to post-quantum cryptography.Seit seiner revolutionären Erfindung durch Satoshi Nakamoto im Jahr 2008 wurden zahlreiche kryptographische Erweiterungen für Bitcoin vorgeschlagen. Gleichwohl wurden nur wenige Vorschläge in Bitcoin und andere weit verbreitete Kryptowährungen integriert, deren Resistenz gegen tiefgreifende Veränderungen augenscheinlich mit ihrer Verbreitung wächst. In dieser Dissertation schlagen wir vier kryptographische Verfahren vor, die die Funktionalität und die Datenschutzeigenschaften von Bitcoin und ähnlichen Kryptowährungen verbessern ohne deren Funktionsweise tiefgreifend verändern zu müssen. Erstens realisieren wir Smart Contracts, die es erlauben widersprüchliche Aussagen einer Vertragspartei mit dem Verlust von Kryptogeld zu bestrafen. Zweitens schlagen wir CoinShuffle++ vor, ein Mix-Protokoll, das die Anonymität von Benutzern verbessert, indem es ihre Transaktionen kombiniert und so deren Rückverfolgung erschwert. Sein Herzstück ist DiceMix, ein neues und effizientes Protokoll zur anonymen Veröffentlichung von Nachrichten ohne vertrauenswürdige Dritte und in der Präsenz von bösartigen Teilnehmern. Drittens kombinieren wir dieses Protokoll mit der existierenden Idee, Geldbeträge in Commitments zu verbergen, und erhalten so das ValueShuffle-Protokoll, das uns ermöglicht, große Hindernisse für den praktischen Einsatz von Mix-Protokollen zu überwinden. Viertens zeigen wir, wie die dabei benutzten Commitments für einen sicheren Übergang zu Post-Quanten-Kryptographie vorbereitet werden können
    corecore