42 research outputs found

    Homology and Robustness of Level and Interlevel Sets

    Full text link
    Given a function f: \Xspace \to \Rspace on a topological space, we consider the preimages of intervals and their homology groups and show how to read the ranks of these groups from the extended persistence diagram of ff. In addition, we quantify the robustness of the homology classes under perturbations of ff using well groups, and we show how to read the ranks of these groups from the same extended persistence diagram. The special case \Xspace = \Rspace^3 has ramifications in the fields of medical imaging and scientific visualization

    Computing robustness and persistence for images

    Get PDF
    We are interested in 3-dimensional images given as arrays of voxels with intensity values. Extending these values to acontinuous function, we study the robustness of homology classes in its level and interlevel sets, that is, the amount of perturbationneeded to destroy these classes. The structure of the homology classes and their robustness, over all level and interlevel sets, can bevisualized by a triangular diagram of dots obtained by computing the extended persistence of the function. We give a fast hierarchicalalgorithm using the dual complexes of oct-tree approximations of the function. In addition, we show that for balanced oct-trees, thedual complexes are geometrically realized in R3R^3 and can thus be used to construct level and interlevel sets. We apply these tools tostudy 3-dimensional images of plant root systems

    Hierarchies and Ranks for Persistence Pairs

    Full text link
    We develop a novel hierarchy for zero-dimensional persistence pairs, i.e., connected components, which is capable of capturing more fine-grained spatial relations between persistence pairs. Our work is motivated by a lack of spatial relationships between features in persistence diagrams, leading to a limited expressive power. We build upon a recently-introduced hierarchy of pairs in persistence diagrams that augments the pairing stored in persistence diagrams with information about which components merge. Our proposed hierarchy captures differences in branching structure. Moreover, we show how to use our hierarchy to measure the spatial stability of a pairing and we define a rank function for persistence pairs and demonstrate different applications.Comment: Topology-based Methods in Visualization 201

    Universality of the Bottleneck Distance for Extended Persistence Diagrams

    Full text link
    The extended persistence diagram is an invariant of piecewise linear functions, introduced by Cohen-Steiner, Edelsbrunner, and Harer. The bottleneck distance has been introduced by the same authors as an extended pseudometric on the set of extended persistence diagrams, which is stable under perturbations of the function. We address the question whether the bottleneck distance is the largest possible stable distance, providing an affirmative answer.Comment: 20 pages + 12 pages appendix, 18 figures, LaTeX; removal of appendix on "stable functors on M" which has moved to arXiv:2108.09298, added and improved figures, added a note of caution regarding variants of the bottleneck distance, rewrote the proof of lemma 4.6 (formerly lemma 4.4), added appendix B including the connection to the original definition of extended persistence, several minor edit
    corecore