83 research outputs found

    Efficient and secure real-time mobile robots cooperation using visual servoing

    Get PDF
    This paper deals with the challenging problem of navigation in formation of mobiles robots fleet. For that purpose, a secure approach is used based on visual servoing to control velocities (linear and angular) of the multiple robots. To construct our system, we develop the interaction matrix which combines the moments in the image with robots velocities and we estimate the depth between each robot and the targeted object. This is done without any communication between the robots which eliminate the problem of the influence of each robot errors on the whole. For a successful visual servoing, we propose a powerful mechanism to execute safely the robots navigation, exploiting a robot accident reporting system using raspberry Pi3. In addition, in case of problem, a robot accident detection reporting system testbed is used to send an accident notification, in the form of a specifical message. Experimental results are presented using nonholonomic mobiles robots with on-board real time cameras, to show the effectiveness of the proposed method

    Under vehicle perception for high level safety measures using a catadioptric camera system

    Get PDF
    In recent years, under vehicle surveillance and the classification of the vehicles become an indispensable task that must be achieved for security measures in certain areas such as shopping centers, government buildings, army camps etc. The main challenge to achieve this task is to monitor the under frames of the means of transportations. In this paper, we present a novel solution to achieve this aim. Our solution consists of three main parts: monitoring, detection and classification. In the first part we design a new catadioptric camera system in which the perspective camera points downwards to the catadioptric mirror mounted to the body of a mobile robot. Thanks to the catadioptric mirror the scenes against the camera optical axis direction can be viewed. In the second part we use speeded up robust features (SURF) in an object recognition algorithm. Fast appearance based mapping algorithm (FAB-MAP) is exploited for the classification of the means of transportations in the third part. Proposed technique is implemented in a laboratory environment

    On-board and Ground Visual Pose Estimation Techniques for UAV Control

    Get PDF
    In this paper, two techniques to control UAVs (Unmanned Aerial Vehicles), based on visual information are presented. The first one is based on the detection and tracking of planar structures from an on-board camera, while the second one is based on the detection and 3D reconstruction of the position of the UAV based on an external camera system. Both strategies are tested with a VTOL (Vertical take-off and landing) UAV, and results show good behavior of the visual systems (precision in the estimation and frame rate) when estimating the helicopter¿s position and using the extracted information to control the UAV

    Visual servoing based mobile robot navigation able to deal with complete target loss

    Full text link
    International audienceThis paper combines the reactive collision avoidance methods with image-based visual servoing control for mobile robot navigation in an indoor environment. The proposed strategy allows the mobile robot to reach a desired position, described by a natural visual target, among unknown obstacles. While the robot avoids the obstacles, the camera could lose its target, which makes visual servoing fail. We propose in this paper a strategy to deal with the loss of visual features by taking advantage of the odometric data sensing. Obstacles are detected by the laser range finder and their boundaries are modeled using B-spline curves. We validate our strategy in a real experiment for an indoor mobile robot navigation in presence of obstacles

    Control de robots móviles mediante visión omnidireccional utilizando la geometría de tres vistas

    Get PDF
    Este trabajo trata acerca del control visual de robot móviles. Dentro de este campo tan amplio de investigación existen dos elementos a los que prestaremos especial atención: la visión omnidireccional y los modelos geométricos multi-vista. Las cámaras omnidireccionales proporcionan información angular muy precisa, aunque presentan un grado de distorsión significativo en dirección radial. Su cualidad de poseer un amplio campo de visión hace que dichas cámaras sean apropiadas para tareas de navegación robótica. Por otro lado, el uso de los modelos geométricos que relacionan distintas vistas de una escena permite rechazar emparejamientos erróneos de características visuales entre imágenes, y de este modo robustecer el proceso de control mediante visión. Nuestro trabajo presenta dos técnicas de control visual para ser usadas por un robot moviéndose en el plano del suelo. En primer lugar, proponemos un nuevo método para homing visual, que emplea la información dada por un conjunto de imágenes de referencia adquiridas previamente en el entorno, y las imágenes que toma el robot a lo largo de su movimiento. Con el objeto de sacar partido de las cualidades de la visión omnidireccional, nuestro método de homing es puramente angular, y no emplea información alguna sobre distancia. Esta característica, unida al hecho de que el movimiento se realiza en un plano, motiva el empleo del modelo geométrico dado por el tensor trifocal 1D. En particular, las restricciones geométricas impuestas por dicho tensor, que puede ser calculado a partir de correspondencias de puntos entre tres imágenes, mejoran la robustez del control en presencia de errores de emparejamiento. El interés de nuestra propuesta reside en que el método de control empleado calcula las velocidades del robot a partir de información únicamente angular, siendo ésta muy precisa en las cámaras omnidireccionales. Además, presentamos un procedimiento que calcula las relaciones angulares entre las vistas disponibles de manera indirecta, sin necesidad de que haya información visual compartida entre todas ellas. La técnica descrita se puede clasificar como basada en imagen (image-based), dado que no precisa estimar la localización ni utiliza información 3D. El robot converge a la posición objetivo sin conocer la información métrica sobre la trayectoria seguida. Para algunas aplicaciones, como la evitación de obstáculos, puede ser necesario disponer de mayor información sobre el movimiento 3D realizado. Con esta idea en mente, presentamos un nuevo método de control visual basado en entradas sinusoidales. Las sinusoides son funciones con propiedades matemáticas bien conocidas y de variación suave, lo cual las hace adecuadas para su empleo en maniobras de aparcamiento de vehículos. A partir de las velocidades de variación sinusoidal que definimos en nuestro diseño, obtenemos las expresiones analíticas de la evolución de las variables de estado del robot. Además, basándonos en dichas expresiones, proponemos un método de control mediante realimentación del estado. La estimación del estado del robot se obtiene a partir del tensor trifocal 1D calculado entre la vista objetivo, la vista inicial y la vista actual del robot. Mediante este control sinusoidal, el robot queda alineado con la posición objetivo. En un segundo paso, efectuamos la corrección de la profundidad mediante una ley de control definida directamente en términos del tensor trifocal 1D. El funcionamiento de los dos controladores propuestos en el trabajo se ilustra mediante simulaciones, y con el objeto de respaldar su viabilidad se presentan análisis de estabilidad y resultados de simulaciones y de experimentos con imágenes reales

    Visual Servoing of a UGV from a UAV using Differential Flatness

    Get PDF
    In this paper the problem of controlling the motion of a nonholonomic vehicle along a desired trajectory using observations from an overhead camera is considered. The control problem is formulated in the image plane. We show that the system in the image plane is differentially flat and use this property to generate effective control strategies using only visual feedback. Simulation results illustrate the methodology and show robustness to errors in the camera calibration parameters
    corecore