1,706 research outputs found

    Semilinear elliptic equations in thin regions with terms concentrating on oscillatory boundaries

    Get PDF
    In this work we study the behavior of a family of solutions of a semilinear elliptic equation, with homogeneous Neumann boundary condition, posed in a two-dimensional oscillating thin region with reaction terms concentrated in a neighborhood of the oscillatory boundary. Our main result is concerned with the upper and lower semicontinuity of the set of solutions. We show that the solutions of our perturbed equation can be approximated with ones of a one-dimensional equation, which also captures the effects of all relevant physical processes that take place in the original problem

    The Neumann problem in thin domains with very highly oscillatory boundaries

    Full text link
    In this paper we analyze the behavior of solutions of the Neumann problem posed in a thin domain of the type Rϵ={(x1,x2)∈R2  ∣  x1∈(0,1), − ϵ b(x1)<x2<ϵ G(x1,x1/ϵα)}R^\epsilon = \{(x_1,x_2) \in \R^2 \; | \; x_1 \in (0,1), \, - \, \epsilon \, b(x_1) < x_2 < \epsilon \, G(x_1, x_1/\epsilon^\alpha) \} with α>1\alpha>1 and ϵ>0\epsilon > 0, defined by smooth functions b(x)b(x) and G(x,y)G(x,y), where the function GG is supposed to be l(x)l(x)-periodic in the second variable yy. The condition α>1\alpha > 1 implies that the upper boundary of this thin domain presents a very high oscillatory behavior. Indeed, we have that the order of its oscillations is larger than the order of the amplitude and height of RϵR^\epsilon given by the small parameter ϵ\epsilon. We also consider more general and complicated geometries for thin domains which are not given as the graph of certain smooth functions, but rather more comb-like domains.Comment: 20 pages, 4 figure

    Homogenization of Dirichlet parabolic problems for coefficients and open sets simultaneously variable and applications to optimal design

    Get PDF
    In a previous paper, we studied the homogenization of a sequence of parabolic linear Dirichlet problems, when the coefficients and the domains vary arbitrarily. Here, we improve the convergence result given in this paper by showing the strong convergence in every time. This is applied to obtain an existence result for control problems in optimal design written in a relaxed form. The control variables are the material and the shape

    Stochastic homogenization of Λ\Lambda-convex gradient flows

    Get PDF
    In this paper we present a stochastic homogenization result for a class of Hilbert space evolutionary gradient systems driven by a quadratic dissipation potential and a Λ\Lambda-convex energy functional featuring random and rapidly oscillating coefficients. Specific examples included in the result are Allen-Cahn type equations and evolutionary equations driven by the pp-Laplace operator with p∈(1,∞)p\in (1,\infty). The homogenization procedure we apply is based on a stochastic two-scale convergence approach. In particular, we define a stochastic unfolding operator which can be considered as a random counterpart of the well-established notion of periodic unfolding. The stochastic unfolding procedure grants a very convenient method for homogenization problems defined in terms of (Λ\Lambda-)convex functionals.Comment: arXiv admin note: text overlap with arXiv:1805.0954

    Homogenization via formal multiscale asymptotics and volume averaging: How do the two techniques compare?

    Get PDF
    A wide variety of techniques have been developed to homogenize transport equations in multiscale and multiphase systems. This has yielded a rich and diverse field, but has also resulted in the emergence of isolated scientific communities and disconnected bodies of literature. Here, our goal is to bridge the gap between formal multiscale asymptotics and the volume averaging theory. We illustrate the methodologies via a simple example application describing a parabolic transport problem and, in so doing, compare their respective advantages/disadvantages from a practical point of view. This paper is also intended as a pedagogical guide and may be viewed as a tutorial for graduate students as we provide historical context, detail subtle points with great care, and reference many fundamental works

    Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets

    Get PDF
    For a fixed bounded open set Ω ⊂ RN , a sequence of open sets Ωn ⊂ Ω and a sequence of sets Γn ⊂ ∂Ω ∩ ∂Ωn, we study the asymptotic behavior of the solution of a nonlinear elliptic system posed on Ωn, satisfying Neumann boundary conditions on Γn and Dirichlet boundary conditions on ∂Ωn \ Γn. We obtain a representation of the limit problem which is stable by homogenization and we prove that this representation depends on Ωn and Γn locally.Ministerio de Educación y CienciaJunta de Andalucí
    • …
    corecore