145 research outputs found

    Multifunction Transceiver Architecture and Technology for Future Wireless Systems

    Get PDF
    RÉSUMÉ Depuis la toute première transmission sans fil, les ondes radiofréquences ont été progressivement mises en valeur et exploitées dans un nombre de plus en plus important d'applications. Parmi toutes ces applications, la détection et la télécommunication sont sans doute les plus indispensables de nos jours. Il existe un grand nombre d’utilisations des radiofréquences, incluant les transports intelligents pour lesquels les véhicules doivent être équipés à la fois de radars et de dispositifs de communication afin d’être capables de détecter l'environnement ainsi que de réaliser la communication avec d'autres unités embarquées. La technologie émergente 5G est un autre exemple pour lequel plusieurs capteurs et radios devraient être capables de coopérer de manière autonome ou semi-autonome. Les principes de fonctionnement des systèmes radars et radio sont toutefois différents. Ces différences fondamentales peuvent entraîner l'utilisation de différentes architectures de traitement du signal et d'émetteur-récepteur, ce qui peut poser des problèmes pour l'intégration de toutes les fonctions requises au sein d'une seule et même plate-forme. En dehors de cela, certaines applications requièrent plusieurs fonctions simultanément dans un même dispositif. Par exemple, les systèmes de détection d'angle d'arrivée 2D nécessitent d'estimer l'angle d'arrivée (AOA) du faisceau entrant dans les plans horizontal et vertical simultanément. La communication radio multi-bandes et multi-modes est un autre exemple pour lequel un système radio doit être capable de communiquer dans plusieurs bandes de fréquences et dans plusieurs modes, par exemple, un duplexage en fonction de la fréquence ou du temps. À première vue, on peut penser que l'assemblage de plusieurs dispositifs distincts n'est pas la meilleure solution en ce qui concerne le coût, la simplicité et la fonctionnalité. Par conséquent, une direction de recherche consiste à proposer une architecture d'émetteur-récepteur unifiée et compacte plutôt qu’une plate-forme assemblant de multiples dispositifs distincts. C’est cette problématique qui est spécifiquement abordée dans ce travail. Selon les fonctions à intégrer dans un seul et unique système multifonctionnel, la solution peut traiter plusieurs aspects simultanément. Par exemple, toute solution réalisant l'intégration de fonctions liées au radar et à la radio devrait traiter deux aspects principaux, à savoir : la forme d'onde opérationnelle et l'architecture frontale RF.----------ABSTRACT Since the very early wireless transmission of radiofrequency signals, it has been gradually flourished and exploited in a wider and wider range of applications. Among all those applications of radio technology, sensing and communicating are undoubtedly the most indispensable ones. There are a large number of practical scenarios such as intelligent transportations in which vehicles must be equipped with both radar and communication devices to be capable of both sensing the environment and communication with other onboard units. The emerging 5G technology can be another important example in which multiple sensors and radios should be capable of cooperating with each other in an autonomous or semi-autonomous manner. The operation principles of these radar and radio devices are different. Such fundamental differences can result in using different operational signal, distinct signal processing, and transceiver architectures in these systems that can raise challenges for integration of all required functions within a single platform. Other than that, there exist some applications where several functions of a single device (i.e. sensor or radio) are required to be executed simultaneously. For example, 2D angle-of-arrival detection systems require estimating the angle of arrival (AOA) of the incoming beam in both horizontal and vertical planes at the same time. Multiband and multimode radio communication is another example of this kind where a radio system is desired to be capable of communication within several frequency bands and in several modes, e.g., time or frequency division duplexing. At a first glance, one can feel that the mechanical assembling of several distinct devices is not the best solution regarding the cost, simplicity and functionality or operability. Hence, the research attempt in developing a rather unified and compact transceiver architecture as opposed to a classical platform with assembled multiple individual devices comes out of horizon, which is addressed specifically in this work. Depending on the wireless functions that are to be integrated within a single multifunction system, the solution should address multiple aspects simultaneously. For instance, any solution for integrating radar and radio related functions should be able to deal with two principal aspects, namely operational waveform and RF front-end architecture. However, in some other above- mentioned examples such as 2D DOA detection system, identical operational waveform may be used and the main challenge of functional integration would pertain to a unification of multiple mono-functional transceivers

    Novel modulated antennas and probes for millimeter wave imaging applications

    Get PDF
    Microwave and millimeter wave (300 MHz - 300 GHz) imaging techniques have shown great potential for a wide range of industrial and medical applications. These techniques are fundamentally based on measuring relative and coherent electromagnetic fields distributions, e.g., electric fields, around the object to be imaged. Various imaging systems can be devised for measuring relative electric field distributions; each with it own advantages and limitations. This dissertation is focused on addressing critical challenges related to the practical implementation of various microwave and millimeter wave imaging systems. Specifically, this research is meant to achieve three main objectives related to designing efficient modulated imaging methods/array elements, reducing the sensitivity to standoff distance variations in near-field imaging, and designing a simple and accurate vector network analyzer (VNA) for in-situ imaging applications. The concept of modulating millimeter wave antenna and scatterer structures, directly to increase the overall system sensitivity and reduce the image acquisition time, is central to the development presented herein. To improve upon the conventional modulated scatterer technique (MST) based on dipole scatterers; a new multiple loaded scatterer (MLS) method and novel loaded elliptical slot are introduced and analyzed. A unique near-field differential probe based on dual-loaded modulated single waveguide aperture is developed to compensate for and reduce the effect of standoff distance variations in near-field imaging. Finally, a novel vector network analyzer (VNA) design is introduced to meet the rising need for in-situ vector measuring devices. To realize a robust handheld millimeter wave VNA, a custom-designed waveguide phase shifter based on sub-resonant loaded slots is introduced. The proposed MLS method, modulated elliptical slot, dual-loaded modulated aperture probe, and VNA are thoroughly investigated and their efficacy for microwave and millimeter wave imaging is demonstrated --Abstract, page iii

    Substrate Integrated Waveguide Devices and Receiver Systems for Millimeter-Wave Applications

    Get PDF
    RÉSUMÉ La très forte congestion du spectre radiofréquence alloué aux fréquences RF et micro-ondes pour les communications sans fil d’aujourd’hui motive ce travail de recherche qui se consacre aux bandes millimétriques pour lesquelles d’avantages d’allocations spectrales sont disponibles, et qui est particulièrement intéressante pour le transfert à très haut débit. Comparé aux autres technologies de ligne de transmission, le Guide Intégré au Substrat (GIS) montre des avantages très attractifs comme un faible profil, un faible coût, un haut facteur de qualité (facteur Q), de faibles pertes d’insertion... Ce dernier a gagné beaucoup d’attention récemment grâce à ces caractéristiques favorables pour la conception de circuits et systèmes millimétriques. Le sujet de ce doctorat concerne deux tâches de recherche distinctes : la première est dédiée à l’investigation et à la conception de composants et d’antennes GIS innovants pour une possible application en ondes millimétriques; la seconde se consacre à la mise au point et à la démonstration de systèmes de réceptions millimétriques de tailles compactes, faibles pertes, à haut niveau d’intégration et hautes performances. Les chapitres 1 à 4 se concentrent sur l’exploitation et l’investigation, un à un, de composants GIS pour lesquels un nombre de concepts originaux et innovants de structures est proposé et démontré. Dans le chapitre 5, les architectures classiques et les paramètres des systèmes de réception sont introduits, puis utilisés pour la conception de systèmes de réceptions millimétriques dans les chapitres suivants. Du chapitre 6 au chapitre 8, des systèmes submillimétriques et millimétriques basés sur le GIS sont démontrés. Les contributions majeures de cette thèse sont les suivantes : Une structure balancée large bande inhérente peut être obtenue en imprimant un circuit sur deux faces d’un substrat GIS. Ainsi, un balun planaire large bande GIS implémenté sur un circuit imprimé (ou PCB, pour Printed Circuit Board) simple couche est proposé et présenté, suite auquel une nouvelle transition large bande de ligne microruban à ligne parallèle est démontrée. Avec cette transition proposée comme réseau d’alimentation, une nouvelle antenne large bande quasi-Yagi planaire est développée.----------ABSTRACT The heavily congested condition at the existing radio frequency (RF)/microwave spectra allocated for the today’s wireless communications motivates and expedites the research work at millimeter-wave bands where more spectrum space is available for massive data rate delivery. Compared with other transmission line techniques, the substrate integrated waveguide (SIW) platform shows attractive advantages of low profile, low-cost, high Q-factor, and low insertion loss, etc. It has gained a lot of attention recently due to its favorable features in millimeter-wave circuit/system design. The topic of this doctoral dissertation are concerned with two distinct research tasks: (1) investigating and designing innovative SIW components and antennas for possible millimeter-wave applications; (2) developing and demonstrating geometry-compact, low cost, high level of integration and high performance millimeter-wave receiver systems. Chapters 1 to 4 focus on the exploitation and investigation of individual SIW devices, in which a number of original concepts and innovative structures are proposed and demonstrated. In Chapter 5, generic architectures and parameters of receiver systems are discussed and used as a guideline for the millimeter-wave system design in the next chapters. From Chapter 6 to Chapter 8, sub-millimeter/millimeter wave systems based on SIW technique are demonstrated. The major contributions of this thesis work can be highlighted as follows:An inherent broadband balanced structure can be achieved by printing circuits on two opposite sides of an SIW substrate. According to this feature, a broadband SIW planar balun implemented on a single layer printed circuit board (PCB) is proposed and presented, following which another newly proposed broadband microstrip-to-broadside parallel stripline transition is demonstrated. With the proposed transition as the feeding network, a novel broadband printed quasi-Yagi antenna is developed. Half-mode substrate integrated waveguide (HMSIW) and quarter-mode substrate integrated waveguide (QMSIW) techniques are introduced for the purpose of miniaturizing SIW circuits and enhancing the bandwidth

    Ultra high data rate CMOS front ends

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motivated the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performing measurements using on-wafer probing at 60 GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitive to the effective length and bending of the interfaces. This paper presents different 60 GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, a Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60 GHZ integrated components and systems in the main stream CMOS technology

    Ultra high data rate CMOS FEs

    Get PDF
    The availability of numerous mm-wave frequency bands for wireless communication has motived the exploration of multi-band and multi-mode integrated components and systems in the main stream CMOS technology. This opportunity has faced the RF designer with the transition between schematic and layout. Modeling the performance of circuits after layout and taking into account the parasitic effects resulting from the layout are two issues that are more important and influential at high frequency design. Performaning measurements using on-wafer probing at 60GHz has its own complexities. The very short wave-length of the signals at mm-wave frequencies makes the measurements very sensitiv to the effective length and bending of the interfaces. This paper presents different 60GHz corner blocks, e.g. Low Noise Amplifier, Zero IF mixer, Phase-Locked Loop, A Dual-Mode Mm-Wave Injection-Locked Frequency Divider and an active transformed power amplifiers implemented in CMOS technologies. These results emphasize the feasibility of the realization 60GHZ integrated components and systems in the main stream CMOS technology

    Homogeneous Test-bed for Cognitive Radio

    Get PDF
    In the current frequency allocation scheme, the radio spectrum is found to be heavily underutilized in time, frequency and space dimensions or any of their combination. To improve spectrum utilization, the unused contiguous or non-contiguous portion of the radio spectrum (spectrum hole) can be accessed opportunistically using cognitive radio technology provided it is interference free to the local users of the network. To reliably detect the spectrum holes, which is necessary to limit the interference, cognitive radio is required to have high time and frequency resolutions to detect radio technologies (e.g. GSM 900, 2.4 GHz WLAN) at the packet level in the transmitted channel to avoid misinterpretation of occupancy states in time and frequency. In addition, having high sensitivity and instantaneous dynamic range can enable cognitive radio to detect weak received signals and their detection in the presence of strong received signals. Besides these requirements, a large sensing bandwidth can increase the chances to find spectrum holes in multiple radio technologies concurrently. A chirp channel sounder receiver has been developed according to the aforementioned requirements with a bandwidth of 750 MHz to provide reliable detection of received signals in two frequency ranges; 1) 250 MHz to 1 GHz, 2) 2.2 GHz to 2.95 GHz. The developed receiver is capable of finding spectrum holes having a duration of 204.8 μs and a transmitted channel bandwidth up to 200 kHz. To explore the spectrum holes in the space dimensions, six chirp channel sounder receivers have been developed to form a homogeneous test-bed, which can be deployed and controlled independently. To experimentally validate the ability of the built receiver, short term spectrum occupancy measurements have been conducted to monitor 2.4 GHz WLAN traffic from a real wireless network to quantify the spectrum utilization and duration of spectrum holes in the time domain. It has been found that the radio spectrum is underutilized and empirical distribution of the duration of the spectrum hole can be modelled using lognormal and gamma distributions for prediction using a two state continuous time semi-Markov model. To experimentally validate the receiver’s capabilities in both the supported frequency ranges, long term spectrum occupancy measurements with 750 MHz sensing bandwidth have been performed and received signals have been detected at frame or packet level to quantify spectrum utilization. It has been found that the radio spectrum is highly underutilized at the measurement location and exhibits significant amount of spectrum holes in both time and frequency. To experimentally validate the functionalities of the homogeneous test-bed, short term spectrum occupancy have been performed to monitor 2.4 GHz WLAN traffic from a real wireless network. The experiment has been conducted using multiple receivers to quantify the amount of cooperation individual or multiple cognitive radio users can provide for reliable detection of spectrum holes in time, frequency and space. It has been found that the space dimension influences strongly the statistics of cooperation parameters

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Simultaneous Data Communication and Power Transfer Technique with Multiport Interferometric Receiver

    Get PDF
    RÉSUMÉ Le problème de la communication est généralement présenté comme un problème de trans-mission d’un message généré d’un point a un autre. Certains systèmes de communication modernes sou˙rent de contraintes énergétiques sévères. Avec le développement rapide des systèmes électroniques sans fil de faible puissance, d’innombrables activités de recherche ont été menées en vue d’explorer la faisabilité d’une alimentation à distance ou sans fil de ces systèmes. Par conséquent, la transmission d’énergie sans fil (WPT) est en cours de développe-ment en tant que technique prometteuse pour alimenter des appareils électroniques à distance et pour prolonger la durée de vie des réseaux sans fil à contrainte d’énergie. Parmi les éner-gies renouvelables récoltées dans l’environnement, les signaux RF rayonnés par les émetteurs peuvent être une ressource viable pour le transfert d’énergie sans fil, tandis que les signaux RF ont été largement utilisés comme véhicule pour la transmission d’informations sans fil (WIT). Par conséquent, le transfert simultané d’informations et la plateforme de transfert de puissance sans fil (SWIPT) deviennent bénéfiques, car il réalise les deux utilisations utiles des signaux RF en même temps et il o˙re ainsi potentiellement une grande commodité aux utilisateurs mobiles. L’antenne redresseuse, qui combine des fonctionnalités du redresseur et de l’antenne, est un élément clé pour la transmission et la récolte d’énergie sans fil. L’eÿcacité de conversion du circuit de redressement détermine les performances globales de l’antenne redresseuse. Par conséquent, pour concevoir une antenne redresseuse à haute eÿcacité qui peut garantir la qualité d’un système WPT, il convient de se concentrer davantage sur l’investigation, l’analyse et le développement de redresseurs axés sur les performances en référence à une eÿcacité de conversion radio fréquence à courant continu. D’un autre côté, les circuits redresseurs peuvent simplement récupérer l’énergie et ils ne peuvent pas décoder le signal transmis pour fins de communication. Cependant, la transmission de données est une exigence essentielle des systèmes de communication sans fil. Par conséquent, si la capacité de détection et de traitement du signal peut être ajoutée à une architecture antenne redresseuse, un récepteur avec transmission de puissance sans fil et communication de données simultanées peut être réalisé. Ce mémoire vise à étudier et à démontrer un récepteur de multifonction et de multiport qui a la capacité de collecter simultanément l’énergie sans fil et les données de communication fonctionnant à la fréquence des microondes.----------ABSTRACT The problem of communication is usually cast as one of transmitting a message generated at one point to another point. Some modern communication systems are known to suffer from severe energy constraints and power consumptions. With the rapid development of low power wireless electronic systems, countless research activities have been carried out to explore the feasibility of a remote or wireless powering of those systems. Therefore, wireless power transmission (WPT) is being developed as a promising technique, for powering electronic devices over distance and for prolonging the lifetime of energy constrained wireless networks. Among the renewable energy harvested from the environment, the RF signals radiated by transmitters can be a viable resource for wireless power transfer, while RF signals have been widely used as a vehicle for wireless information transmission (WIT). Therefore, simultaneous wireless information and power transfer (SWIPT) platform becomes appealing since it realizes both useful utilizations of RF signals at the same time, and thus potentially offers great convenience to mobile users. The rectenna, combining the functionalities of rectifier and antenna, is a key element for wireless power transmission and harvesting. The conversion efficiency of the rectifying circuit determines the overall performance of the rectenna. Therefore, to design a high-efficiency rectenna that can guarantee the quality of a WPT system, more focus should be concentrated on the investigation, analysis and development performance-driven rectifiers with reference to high RF-to-DC conversion efficiency. On the other hand, rectenna circuits can just scavenge energy and they cannot decode the transmitted signal for communication purpose. How-ever, the data transmission is an essential requirement of wireless communication systems. Therefore, if the ability of signal detection and processing can be added to a rectenna architecture then a multi-function receiver with simultaneous wireless power transmission and data communication can be realized.This dissertation aims to investigate and demonstrate a multi-function and multi-port receiver with the capability of simultaneous wireless energy harvesting and data communication operating at microwave frequency. To achieve these goals, it becomes interesting when a single receiver chain is able to convert the RF power to DC power, while at the same time converting the RF modulated signal to BaseBand (BB) signal. Therefore, the fundamental methodology to receive and convert the RF signal to BB while simultaneously harvesting power is derived and analyzed in this work

    IR-UWB and OFDM-UWB Transceiver Nodes for Communication and Positioning Purposes

    Get PDF
    Résumé Ultra-wideband (UWB) a suscité l'intérêt de chercheurs et de l'industrie en raison de ses nombreux avantages tels que la faible probabilité d'interception et de la possibilité de combiner la communication des données de positionnement dans un seul système. Il existe plusieurs UWB couche physique (PHY) présentées initialement à la norme IEEE qui convergent en deux propositions principales: des porte-UWB ou Orthogonal Frequency-Division Multiplexing (OFDM-UWB), et à court d'impulsion porteuse à-UWB ou Impulse Radio-(IR-UWB). Une des plus grandes tâches difficiles pour les chercheurs est de nos jours la conception d'émetteurs-récepteurs UWB optimisés qui satisfont à des conditions rigoureuses, dont la simplicité caractéristiques large bande, à faible coût et de conception. Des études antérieures ont montré que les récepteurs à conversion directe basée sur Wave-radio interféromètre (WRI) circuits représentent un bon candidat pour les applications UWB. Circuits IRG ont plusieurs avantages tels que l'exploitation à large bande, à faible coût et la simplicité. Des travaux antérieurs sur l'IRG circuit, cependant, a enquêté sur le circuit de l'IRG sur la base du concept de porteuse unique signaux (par exemple, les signaux sinusoïdaux). L'objectif de ce projet est de fournir les résultats de conception, de simulation, de mise en oeuvre et le test d'un émetteur-récepteur WRI basé sur ce que peut être utilisé comme un noeud ou un pico-réseau dans un détecteur sans fil / réseau de données. Nous allons passer par les étapes de conception et de mise en oeuvre de propositions UWB deux: IR-UWB et OFDM-UWB. Pour la proposition porteuse à nous concentrer sur la conception et la mise en oeuvre de l'émetteur-récepteur en intégrant les opérations de transmission / réception dans un prototype unique, alors que pour la proposition des porte-nous concevoir et mettre en oeuvre l'émetteur-récepteur avec le circuit de l'IRG dans le récepteur seulement utilisé en tant que convertisseur abaisseur directe. Résultats expérimentaux, de simulation et d'analyse ont été obtenus et sont présentés dans cette thèse.----------Abstract Ultra-wideband (UWB) technology has attracted interest from both researchers and the industry due to its numerous advantages such as low probability of interception and the possibility of combining data communication with positioning in a single system. There are several different UWB physical layer (PHY) proposals originally submitted to IEEE which converged into two main proposals: carrier‐based UWB or Orthogonal-Frequency Division Multiplexing (OFDM‐UWB), and short‐pulse carrierless‐UWB or Impulse-Radio (IR-UWB). One of the biggest challenging tasks for researchers nowadays is the design of optimized UWB transceivers that would satisfy rigorous conditions, among which wideband characteristics, low-cost and design simplicity. Previous studies have shown that direct-conversion receivers based on Wave-Radio Interferometer (WRI) circuits represent a suitable candidate for UWB applications. WRI circuits have several advantages such as wideband operation, low cost, and simplicity. Previous works on WRI circuit, however, investigated the WRI circuit based on the concept of single-carrier signals (i.e., sinusoidal signals). The objective of this project is to provide the design, simulation, implementation and testing results of a WRI-based transceiver that can be utilized as a node or a piconet in a wireless sensor/data network. We will go through the design and implementation steps for both UWB proposals: IR-UWB and OFDM-UWB. For the carrierless proposal we will focus on designing and implementing the transceiver by integrating the transmitter/receiver operations in a single prototype, while for the carrier‐based proposal we will design and implement the transceiver with the WRI circuit in the receiver only utilized as a direct downconverter

    Software defined radar system

    Get PDF
    Software defined radar concept and simulation -- Signal processing methods of synthetic software defined radar -- Mixer-based synthetic software defined radar -- Six-port-based syunthetic software defined radar -- Performance study of synthetic software defined radar
    corecore