122 research outputs found

    Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms

    Full text link
    [EN] The Homeomorphic Embedding relation has been amply used for defining termination criteria of symbolic methods for program analysis, transformation, and verification. However, homeomorphic embedding has never been investigated in the context of order-sorted rewrite theories that support symbolic execution methods modulo equational axioms. This paper generalizes the symbolic homeomorphic embedding relation to order-sorted rewrite theories that may contain various combinations of associativity and/or commutativity axioms for different binary operators. We systematically measure the performance of different, increasingly efficient formulations of the homeomorphic embedding relation modulo axioms that we implement in Maude. Our experimental results show that the most efficient version indeed pays off in practice.M. Alpuente and S. Escobar have been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETEO/2019/098, and by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 952215 (TAILOR). J. Meseguer has been supported by NRL under contract number N00173-17-1-G002. A. Cuenca-Ortega has been supported by the SENESCYT, Ecuador (scholarship program 2013).Alpuente Frasnedo, M.; Cuenca-Ortega, A.; Escobar Román, S.; Meseguer, J. (2020). Order-sorted Homeomorphic Embedding modulo Combinations of Associativity and/or Commutativity Axioms. Fundamenta Informaticae. 177(3-4):297-329. https://doi.org/10.3233/FI-2020-1991S2973291773-

    A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms

    Full text link
    [EN] Partial evaluation is a powerful and general program optimization technique with many successful applications. Existing PE schemes do not apply to expressive rule-based languages like Maude, CafeOBJ, OBJ, ASF+SDF, and ELAN, which support: 1) rich type structures with sorts, subsorts, and overloading; and 2) equational rewriting modulo various combinations of axioms such as associativity, commutativity, and identity. In this paper, we develop the new foundations needed and illustrate the key concepts by showing how they apply to partial evaluation of expressive programs written in Maude. Our partial evaluation scheme is based on an automatic unfolding algorithm that computes term variants and relies on high-performance order-sorted equational least general generalization and order-sorted equational homeomorphic embedding algorithms for ensuring termination. We show that our partial evaluation technique is sound and complete for convergent rewrite theories that may contain various combinations of associativity, commutativity, and/or identity axioms for different binary operators. We demonstrate the effectiveness of Maude's automatic partial evaluator, Victoria, on several examples where it shows significant speed-ups. (C) 2019 Elsevier Inc. All rights reserved.This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32, by Generalitat Valenciana under grant PROMETEO/2019/098, and by NRL under contract number N00173-17-1-G002. Angel Cuenca-Ortega has been supported by the SENESCYT, Ecuador (scholarship program 2013).Alpuente Frasnedo, M.; Cuenca-Ortega, AE.; Escobar Román, S.; Meseguer, J. (2020). A Partial Evaluation Framework for Order-sorted Equational Programs modulo Axioms. Journal of Logical and Algebraic Methods in Programming. 110:1-36. https://doi.org/10.1016/j.jlamp.2019.100501S13611

    Narrowing-based Optimization of Rewrite Theories

    Full text link
    Partial evaluation has been never investigated in the context of rewrite theories that allow concurrent systems to be specified by means of rules, with an underlying equational theory being used to model system states as terms of an algebraic data type. In this paper, we develop a symbolic, narrowing-driven partial evaluation framework for rewrite theories that supports sorts, subsort overloading, rules, equations, and algebraic axioms. Our partial evaluation scheme allows a rewrite theory to be optimized by specializing the plugged equational theory with respect to the rewrite rules that define the system dynamics. This can be particularly useful for automatically optimizing rewrite theories that contain overly general equational theories which perform unnecessary computations involving matching modulo axioms, because some of the axioms may be blown away after the transformation. The specialization is done by using appropriate unfolding and abstraction algorithms that achieve significant specialization while ensuring the correctness and termination of the specialization. Our preliminary results demonstrate that our transformation can speed up a number of benchmarks that are difficult to optimize otherwise.This work has been partially supported by the EU (FEDER) and the Spanish MCIU under grant RTI2018094403-B-C32,andbyGeneralitatValencianaundergrantPROMETEO/2019/098. JuliaSapiñahasbeensupported by the Generalitat Valenciana APOSTD/2019/127 grantAlpuente Frasnedo, M.; Ballis, D.; Escobar Román, S.; Sapiña Sanchis, J. (2020). Narrowing-based Optimization of Rewrite Theories. Universitat Politècnica de València. http://hdl.handle.net/10251/14557

    Inspecting Maude Variants with GLINTS

    Full text link
    [EN] This paper introduces GLINTS, a graphical tool for exploring variant narrowing computations in Maude. The most recent version of Maude, version 2.7.1, provides quite sophisticated unification features, including order-sorted equational unification for convergent theories modulo axioms such as associativity, commutativity, and identity. This novel equational unification relies on built-in generation of the set of variants of a term t, i.e., the canonical form of t sigma for a computed substitution sigma. Variant generation relies on a novel narrowing strategy called folding variant narrowing that opens up new applications in formal reasoning, theorem proving, testing, protocol analysis, and model checking, especially when the theory satisfies the finite variant property, i.e., there is a finite number of most general variants for every term in the theory. However, variant narrowing computations can be extremely involved and are simply presented in text format by Maude, often being too heavy to be debugged or even understood. The GLINTS system provides support for (i) determining whether a given theory satisfies the finite variant property, (ii) thoroughly exploring variant narrowing computations, (iii) automatic checking of node embedding and closedness modulo axioms, and (iv) querying and inspecting selected parts of the variant trees.This work has been partially supported by EU (FEDER) and Spanish MINECO grant TIN 2015-69175-C4-1-R and by Generalitat Valenciana PROMETEO-II/2015/013. Angel Cuenca-Ortega is supported by SENESCYT, Ecuador (scholarship program 2013), and Julia Sapina by FPI-UPV grant SP2013-0083. Santiago Escobar is supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0286.Alpuente Frasnedo, M.; Cuenca-Ortega, A.; Escobar Román, S.; Sapiña-Sanchis, J. (2017). Inspecting Maude Variants with GLINTS. Theory and Practice of Logic Programming. 17(5-6):689-707. https://doi.org/10.1017/S147106841700031XS689707175-

    Calculus of functors, operad formality, and rational homology of embedding spaces

    Full text link
    Let M be a smooth manifold and V a Euclidean space. Let Ebar(M,V) be the homotopy fiber of the map from Emb(M,V) to Imm(M,V). This paper is about the rational homology of Ebar(M,V). We study it by applying embedding calculus and orthogonal calculus to the bi-functor (M,V) |--> HQ /\Ebar(M,V)_+. Our main theorem states that if the dimension of V is more than twice the embedding dimension of M, the Taylor tower in the sense of orthogonal calculus (henceforward called ``the orthogonal tower'') of this functor splits as a product of its layers. Equivalently, the rational homology spectral sequence associated with the tower collapses at E^1. In the case of knot embeddings, this spectral sequence coincides with the Vassiliev spectral sequence. The main ingredients in the proof are embedding calculus and Kontsevich's theorem on the formality of the little balls operad. We write explicit formulas for the layers in the orthogonal tower of the functor HQ /\Ebar(M,V)_+. The formulas show, in particular, that the (rational) homotopy type of the layers of the orthogonal tower is determined by the (rational) homology type of M. This, together with our rational splitting theorem, implies that under the above assumption on codimension, the rational homology groups of Ebar(M,V) are determined by the rational homology type of M.Comment: 35 pages. An erroneous definition in the last section was corrected, as well as several misprints. The introduction was somewhat reworked. The paper was accepted for publication in Acta Mathematic

    Programming and symbolic computation in Maude

    Full text link
    [EN] Rewriting logic is both a flexible semantic framework within which widely different concurrent systems can be naturally specified and a logical framework in which widely different logics can be specified. Maude programs are exactly rewrite theories. Maude has also a formal environment of verification tools. Symbolic computation is a powerful technique for reasoning about the correctness of concurrent systems and for increasing the power of formal tools. We present several new symbolic features of Maude that enhance formal reasoning about Maude programs and the effectiveness of formal tools. They include: (i) very general unification modulo user-definable equational theories, and (ii) symbolic reachability analysis of concurrent systems using narrowing. The paper does not focus just on symbolic features: it also describes several other new Maude features, including: (iii) Maude's strategy language for controlling rewriting, and (iv) external objects that allow flexible interaction of Maude object-based concurrent systems with the external world. In particular, meta-interpreters are external objects encapsulating Maude interpreters that can interact with many other objects. To make the paper self-contained and give a reasonably complete language overview, we also review the basic Maude features for equational rewriting and rewriting with rules, Maude programming of concurrent object systems, and reflection. Furthermore, we include many examples illustrating all the Maude notions and features described in the paper.Duran has been partially supported by MINECO/FEDER project TIN2014-52034-R. Escobar has been partially supported by the EU (FEDER) and the MCIU under grant RTI2018-094403-B-C32, by the Spanish Generalitat Valenciana under grant PROMETE0/2019/098, and by the US Air Force Office of Scientific Research under award number FA9550-17-1-0286. MartiOliet and Rubio have been partially supported by MCIU Spanish project TRACES (TIN2015-67522-C3-3-R). Rubio has also been partially supported by a MCIU grant FPU17/02319. Meseguer and Talcott have been partially supported by NRL Grant N00173 -17-1-G002. Talcott has also been partially supported by ONR Grant N00014-15-1-2202.Durán, F.; Eker, S.; Escobar Román, S.; NARCISO MARTÍ OLIET; José Meseguer; Rubén Rubio; Talcott, C. (2020). Programming and symbolic computation in Maude. Journal of Logical and Algebraic Methods in Programming. 110:1-58. https://doi.org/10.1016/j.jlamp.2019.100497S158110Alpuente, M., Escobar, S., Espert, J., & Meseguer, J. (2014). A modular order-sorted equational generalization algorithm. Information and Computation, 235, 98-136. doi:10.1016/j.ic.2014.01.006K. Bae, J. Meseguer, Predicate abstraction of rewrite theories, in: [36], 2014, pp. 61–76.Bae, K., & Meseguer, J. (2015). Model checking linear temporal logic of rewriting formulas under localized fairness. Science of Computer Programming, 99, 193-234. doi:10.1016/j.scico.2014.02.006Bae, K., Meseguer, J., & Ölveczky, P. C. (2014). Formal patterns for multirate distributed real-time systems. Science of Computer Programming, 91, 3-44. doi:10.1016/j.scico.2013.09.010P. Borovanský, C. Kirchner, H. Kirchner, P.E. Moreau, C. Ringeissen, An overview of ELAN, in: [77], 1998, pp. 55–70.Bouhoula, A., Jouannaud, J.-P., & Meseguer, J. (2000). Specification and proof in membership equational logic. Theoretical Computer Science, 236(1-2), 35-132. doi:10.1016/s0304-3975(99)00206-6Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). Stratego/XT 0.17. A language and toolset for program transformation. Science of Computer Programming, 72(1-2), 52-70. doi:10.1016/j.scico.2007.11.003Bruni, R., & Meseguer, J. (2006). Semantic foundations for generalized rewrite theories. Theoretical Computer Science, 360(1-3), 386-414. doi:10.1016/j.tcs.2006.04.012M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martí-Oliet, C.L. Talcott, Two decades of Maude, in: [86], 2015, pp. 232–254.Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285(2), 187-243. doi:10.1016/s0304-3975(01)00359-0Clavel, M., & Meseguer, J. (2002). Reflection in conditional rewriting logic. Theoretical Computer Science, 285(2), 245-288. doi:10.1016/s0304-3975(01)00360-7F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, C.L. Talcott, Associative unification and symbolic reasoning modulo associativity in Maude, in: [121], 2018, pp. 98–114.Durán, F., Lucas, S., Marché, C., Meseguer, J., & Urbain, X. (2008). Proving operational termination of membership equational programs. Higher-Order and Symbolic Computation, 21(1-2), 59-88. doi:10.1007/s10990-008-9028-2F. Durán, J. Meseguer, An extensible module algebra for Maude, in: [77], 1998, pp. 174–195.Durán, F., & Meseguer, J. (2003). Structured theories and institutions. Theoretical Computer Science, 309(1-3), 357-380. doi:10.1016/s0304-3975(03)00312-8Durán, F., & Meseguer, J. (2007). Maude’s module algebra. Science of Computer Programming, 66(2), 125-153. doi:10.1016/j.scico.2006.07.002Durán, F., & Meseguer, J. (2012). On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. The Journal of Logic and Algebraic Programming, 81(7-8), 816-850. doi:10.1016/j.jlap.2011.12.004F. Durán, P.C. Ölveczky, A guide to extending Full Maude illustrated with the implementation of Real-Time Maude, in: [116], 2009, pp. 83–102.S. Escobar, Multi-paradigm programming in Maude, in: [121], 2018, pp. 26–44.Escobar, S., Meadows, C., Meseguer, J., & Santiago, S. (2014). State space reduction in the Maude-NRL Protocol Analyzer. Information and Computation, 238, 157-186. doi:10.1016/j.ic.2014.07.007Escobar, S., Sasse, R., & Meseguer, J. (2012). Folding variant narrowing and optimal variant termination. The Journal of Logic and Algebraic Programming, 81(7-8), 898-928. doi:10.1016/j.jlap.2012.01.002H. Garavel, M. Tabikh, I. Arrada, Benchmarking implementations of term rewriting and pattern matching in algebraic, functional, and object-oriented languages – the 4th rewrite engines competition, in: [121], 2018, pp. 1–25.Goguen, J. A., & Burstall, R. M. (1992). Institutions: abstract model theory for specification and programming. Journal of the ACM, 39(1), 95-146. doi:10.1145/147508.147524Goguen, J. A., & Meseguer, J. (1984). Equality, types, modules, and (why not?) generics for logic programming. The Journal of Logic Programming, 1(2), 179-210. doi:10.1016/0743-1066(84)90004-9Goguen, J. A., & Meseguer, J. (1992). Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2), 217-273. doi:10.1016/0304-3975(92)90302-vR. Gutiérrez, J. Meseguer, Variant-based decidable satisfiability in initial algebras with predicates, in: [61], 2018, pp. 306–322.Gutiérrez, R., Meseguer, J., & Rocha, C. (2015). Order-sorted equality enrichments modulo axioms. Science of Computer Programming, 99, 235-261. doi:10.1016/j.scico.2014.07.003Horn, A. (1951). On sentences which are true of direct unions of algebras. Journal of Symbolic Logic, 16(1), 14-21. doi:10.2307/2268661Katelman, M., Keller, S., & Meseguer, J. (2012). Rewriting semantics of production rule sets. The Journal of Logic and Algebraic Programming, 81(7-8), 929-956. doi:10.1016/j.jlap.2012.06.002Kowalski, R. (1979). Algorithm = logic + control. Communications of the ACM, 22(7), 424-436. doi:10.1145/359131.359136Lucanu, D., Rusu, V., & Arusoaie, A. (2017). A generic framework for symbolic execution: A coinductive approach. Journal of Symbolic Computation, 80, 125-163. doi:10.1016/j.jsc.2016.07.012D. Lucanu, V. Rusu, A. Arusoaie, D. Nowak, Verifying reachability-logic properties on rewriting-logic specifications, in: [86], 2015, pp. 451–474.Lucas, S., & Meseguer, J. (2016). Normal forms and normal theories in conditional rewriting. Journal of Logical and Algebraic Methods in Programming, 85(1), 67-97. doi:10.1016/j.jlamp.2015.06.001N. Martí-Oliet, J. Meseguer, A. Verdejo, A rewriting semantics for Maude strategies, in: [116], 2009, pp. 227–247.Martí-Oliet, N., Palomino, M., & Verdejo, A. (2007). Strategies and simulations in a semantic framework. Journal of Algorithms, 62(3-4), 95-116. doi:10.1016/j.jalgor.2007.04.002Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96(1), 73-155. doi:10.1016/0304-3975(92)90182-fMeseguer, J. (2012). Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming, 81(7-8), 721-781. doi:10.1016/j.jlap.2012.06.003Meseguer, J. (2017). Strict coherence of conditional rewriting modulo axioms. Theoretical Computer Science, 672, 1-35. doi:10.1016/j.tcs.2016.12.026J. Meseguer, Generalized rewrite theories and coherence completion, in: [121], 2018, pp. 164–183.Meseguer, J. (2018). Variant-based satisfiability in initial algebras. Science of Computer Programming, 154, 3-41. doi:10.1016/j.scico.2017.09.001Meseguer, J., Goguen, J. A., & Smolka, G. (1989). Order-sorted unification. Journal of Symbolic Computation, 8(4), 383-413. doi:10.1016/s0747-7171(89)80036-7Meseguer, J., & Ölveczky, P. C. (2012). Formalization and correctness of the PALS architectural pattern for distributed real-time systems. Theoretical Computer Science, 451, 1-37. doi:10.1016/j.tcs.2012.05.040Meseguer, J., Palomino, M., & Martí-Oliet, N. (2008). Equational abstractions. Theoretical Computer Science, 403(2-3), 239-264. doi:10.1016/j.tcs.2008.04.040Meseguer, J., & Roşu, G. (2007). The rewriting logic semantics project. Theoretical Computer Science, 373(3), 213-237. doi:10.1016/j.tcs.2006.12.018Meseguer, J., & Roşu, G. (2013). The rewriting logic semantics project: A progress report. Information and Computation, 231, 38-69. doi:10.1016/j.ic.2013.08.004Meseguer, J., & Skeirik, S. (2017). Equational formulas and pattern operations in initial order-sorted algebras. Formal Aspects of Computing, 29(3), 423-452. doi:10.1007/s00165-017-0415-5Meseguer, J., & Thati, P. (2007). Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation, 20(1-2), 123-160. doi:10.1007/s10990-007-9000-6C. Olarte, E. Pimentel, C. Rocha, Proving structural properties of sequent systems in rewriting logic, in: [121], 2018, pp. 115–135.Ölveczky, P. C., & Meseguer, J. (2007). Semantics and pragmatics of Real-Time Maude. Higher-Order and Symbolic Computation, 20(1-2), 161-196. doi:10.1007/s10990-007-9001-5Ölveczky, P. C., & Thorvaldsen, S. (2009). Formal modeling, performance estimation, and model checking of wireless sensor network algorithms in Real-Time Maude. Theoretical Computer Science, 410(2-3), 254-280. doi:10.1016/j.tcs.2008.09.022Rocha, C., Meseguer, J., & Muñoz, C. (2017). Rewriting modulo SMT and open system analysis. Journal of Logical and Algebraic Methods in Programming, 86(1), 269-297. doi:10.1016/j.jlamp.2016.10.001Şerbănuţă, T. F., Roşu, G., & Meseguer, J. (2009). A rewriting logic approach to operational semantics. Information and Computation, 207(2), 305-340. doi:10.1016/j.ic.2008.03.026Skeirik, S., & Meseguer, J. (2018). Metalevel algorithms for variant satisfiability. Journal of Logical and Algebraic Methods in Programming, 96, 81-110. doi:10.1016/j.jlamp.2017.12.006S. Skeirik, A. Ştefănescu, J. Meseguer, A constructor-based reachability logic for rewrite theories, in: [61], 2018, pp. 201–217.Strachey, C. (2000). Higher-Order and Symbolic Computation, 13(1/2), 11-49. doi:10.1023/a:1010000313106A. Ştefănescu, S. Ciobâcă, R. Mereuta, B.M. Moore, T. Serbanuta, G. Roşu, All-path reachability logic, in: [36], 2014, pp. 425–440.Tushkanova, E., Giorgetti, A., Ringeissen, C., & Kouchnarenko, O. (2015). A rule-based system for automatic decidability and combinability. Science of Computer Programming, 99, 3-23. doi:10.1016/j.scico.2014.02.00

    Theory of Finite Pseudoalgebras

    Get PDF
    Conformal algebras, recently introduced by Kac, encode an axiomatic description of the singular part of the operator product expansion in conformal field theory. The objective of this paper is to develop the theory of ``multi-dimensional'' analogues of conformal algebras. They are defined as Lie algebras in a certain ``pseudotensor'' category instead of the category of vector spaces. A pseudotensor category (as introduced by Lambek, and by Beilinson and Drinfeld) is a category equipped with ``polylinear maps'' and a way to compose them. This allows for the definition of Lie algebras, representations, cohomology, etc. An instance of such a category can be constructed starting from any cocommutative (or more generally, quasitriangular) Hopf algebra HH. The Lie algebras in this category are called Lie HH-pseudoalgebras. The main result of this paper is the classification of all simple and all semisimple Lie HH-pseudoalgebras which are finitely generated as HH-modules. We also start developing the representation theory of Lie pseudoalgebras; in particular, we prove analogues of the Lie, Engel, and Cartan-Jacobson Theorems. We show that the cohomology theory of Lie pseudoalgebras describes extensions and deformations and is closely related to Gelfand-Fuchs cohomology. Lie pseudoalgebras are closely related to solutions of the classical Yang-Baxter equation, to differential Lie algebras (introduced by Ritt), and to Hamiltonian formalism in the theory of nonlinear evolution equations. As an application of our results, we derive a classification of simple and semisimple linear Poisson brackets in any finite number of indeterminates.Comment: 102 pages, 7 figures, AMS late

    A mathematical formalism for the Kondo effect in WZW branes

    Full text link
    In this paper, we show how to adapt our rigorous mathematical formalism for closed/open conformal field theory so that it captures the known physical theory of branes in the WZW model. This includes a mathematically precise approach to the Kondo effect, which is an example of evolution of one conformally invariant boundary condition into another through boundary conditions which can break conformal invariance, and a proposed mathematical statement of the Kondo effect conjecture. We also review some of the known physical results on WZW boundary conditions from a mathematical perspective.Comment: Added explanations of the settings and main result

    New Approach to Arakelov Geometry

    Get PDF
    This work is dedicated to a new completely algebraic approach to Arakelov geometry, which doesn't require the variety under consideration to be generically smooth or projective. In order to construct such an approach we develop a theory of generalized rings and schemes, which include classical rings and schemes together with "exotic" objects such as F_1 ("field with one element"), Z_\infty ("real integers"), T (tropical numbers) etc., thus providing a systematic way of studying such objects. This theory of generalized rings and schemes is developed up to construction of algebraic K-theory, intersection theory and Chern classes. Then existence of Arakelov models of algebraic varieties over Q is shown, and our general results are applied to such models.Comment: 568 pages, with hyperlink
    corecore