114 research outputs found

    Advances in Energy System Optimization

    Get PDF
    The papers presented in this open access book address diverse challenges in decarbonizing energy systems, ranging from operational to investment planning problems, from market economics to technical and environmental considerations, from distribution grids to transmission grids, and from theoretical considerations to data provision concerns and applied case studies. While most papers have a clear methodological focus, they address policy-relevant questions at the same time. The target audience therefore includes academics and experts in industry as well as policy makers, who are interested in state-of-the-art quantitative modelling of policy relevant problems in energy systems. The 2nd International Symposium on Energy System Optimization (ISESO 2018) was held at the Karlsruhe Institute of Technology (KIT) under the symposium theme “Bridging the Gap Between Mathematical Modelling and Policy Support” on October 10th and 11th 2018. ISESO 2018 was organized by the KIT, the Heidelberg Institute for Theoretical Studies (HITS), the Heidelberg University, the German Aerospace Center and the University of Stuttgart

    Enabling Micro-level Demand-Side Grid Flexiblity in Resource Constrained Environments

    Full text link
    The increased penetration of uncertain and variable renewable energy presents various resource and operational electric grid challenges. Micro-level (household and small commercial) demand-side grid flexibility could be a cost-effective strategy to integrate high penetrations of wind and solar energy, but literature and field deployments exploring the necessary information and communication technologies (ICTs) are scant. This paper presents an exploratory framework for enabling information driven grid flexibility through the Internet of Things (IoT), and a proof-of-concept wireless sensor gateway (FlexBox) to collect the necessary parameters for adequately monitoring and actuating the micro-level demand-side. In the summer of 2015, thirty sensor gateways were deployed in the city of Managua (Nicaragua) to develop a baseline for a near future small-scale demand response pilot implementation. FlexBox field data has begun shedding light on relationships between ambient temperature and load energy consumption, load and building envelope energy efficiency challenges, latency communication network challenges, and opportunities to engage existing demand-side user behavioral patterns. Information driven grid flexibility strategies present great opportunity to develop new technologies, system architectures, and implementation approaches that can easily scale across regions, incomes, and levels of development

    Methods for Optimal Microgrid Management

    Get PDF
    Abstract During the last years, the number of distributed generators has grown significantly and it is expected to become higher in the future. Several new technologies are being de-veloped for this type of generation (including microturbines, photovoltaic plants, wind turbines and electrical storage systems) and have to be integrated in the electrical grid. In this framework, active loads (i.e., shiftable demands like electrical vehicles, intelligent buildings, etc.) and storage systems are crucial to make more flexible and smart the dis-tribution system. This thesis deals with the development and application of system engi-neering methods to solve real-world problems within the specific framework of microgrid control and management. The typical kind of problems that is considered when dealing with the manage-ment and control of Microgrids is generally related to optimal scheduling of the flows of energy among the various components in the systems, within a limited area. The general objective is to schedule the energy consumptions to maximize the expected system utility under energy consumption and energy generation constraints. Three different issues related to microgrid management will be considered in detail in this thesis: 1. The problem of Nowcasting and Forecasting of the photovoltaic power production (PV). This problem has been approached by means of several data-driven techniques. 2. The integration of stations to charge electric vehicles in the smart grids. The impact of this integration on the grid processes and on the demand satisfaction costs have been analysed. In particular, two different models have been developed for the optimal integration of microgrids with renewable sources, smart buildings, and the electrical vehicles (EVs), taking into account two different technologies. The first model is based on a discrete-time representation of the dynamics of the system, whereas the second one adopts a discrete-event representation. 3. The problem of the energy optimization for a set of interconnencted buildings. In ths connection, an architecture, structured as a two-level control scheme has been developed. More precisely, an upper decision maker solves an optimization problem to minimize its own costs and power losses, and provides references (as 3 regars the power flows) to local controllers, associated to buildings. Then, lower level (local) controllers, on the basis of a more detailed representation of each specific subsystem (the building associated to the controller), have the objective of managing local storage systems and devices in order to follow the reference values (provided by the upper level), to contain costs, and to achieve comfort requirements

    Quantitative Evaluation of Residential Virtual Energy Storage in Comparison to Battery Energy Storage: A Cyber-Physical Systems

    Get PDF
    Virtual energy storage (VES) refers to an indirect method of storing energy without using a battery. In a residential setting, VES uses the building structure interior appurtenances together with its physical properties as an energy storage device. It represents a methodology in energy storage mechanisms to help with load management in residential microgrids. It is an approach that is critical to the necessary paradigm shift from the less flexible and more costly demand response energy market of the present to the more flexible and potentially less costly availability response energy market of the future. This work quantifies VES monetary cost-savings potential for residential homes, as part of an effort to develop smart systems (using power sensors, and simple computation and control mechanisms) to assist individuals in making decisions about energy use that will save energy and, consequently, electricity costs. The project also compares the cost-effectiveness of VES to that of battery energy storage (BES)Ă‚Âżcurrently the more traditional and widely-advocated-for approach to energy storage for load management. In addition, this project devises a load management framework for a residential microgrid, where strategies that enable energy and cost savings for both utilities and consumers are tested. To make a home act as its own storage device, we need to intelligently control its heating, ventilation, and air conditioning (HVAC) system. Through this control, we can harness the house\u27s thermal storage abilities by methods such as preheating or precooling the house (with due consideration to user comfort) during periods when energy is less expensive so that this heat or coolness will be retained during higher-cost periods. A well-insulated residential home equipped with sensing technology and intermittent generation resources will be utilized as a testbed for this project. Using a testbed is advantageous as it provides realistic results as well as a platform where behavior of the home can be learned. By combining modeling techniques with test results from a live testbed, cost-saving solutions can be simulated and later evaluated. This work provides a means to determine how to reduce peak demand and save costs for both utilities and consumers by changing consumer behavior, while respecting consumer thermal comfort preferences. Additionally, by creating the aforementioned modeling framework, we provide the load management community with tools by which they can readily test their optimization algorithms. By so doing, more efficient algorithms can be developed (potentially leading to increased residential energy efficiency)

    Advanced applications for smart energy systems considering grid-interactive demand response

    Get PDF

    Advanced applications for smart energy systems considering grid-interactive demand response

    Get PDF
    • …
    corecore