173 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Demand Side Management In Smart Grid Optimization Using Artificial Fish Swarm Algorithm

    Get PDF
    The demand side management and their response including peak shaving approaches and motivations with shiftable load scheduling strategies advantages are the main focus of this paper. A recent real-time pricing model for regulating energy demand is proposed after a survey of literature-based demand side management techniques. Lack of user’s resources needed to change their energy consumption for the system's overall benefit. The recommended strategy involves modern system identification and administration that would enable user side load control. This might assist in balancing the demand and supply sides more effectively while also lowering peak demand and enhancing system efficiency. The AFSA and BFO algorithms are combined in this study to handle the optimization of difficult problems in a range of industries. Although the BFO will be used to exploit the search space and converge to the optimum solution, the AFSA will be used to explore the search space and retain variation. In terms of reduction of peak demand, energy consumption, and user satisfaction, the AFSA-BFO hybrid algorithm outperforms previous techniques in the field of demand side management in a smart grid context, using an AFSA. According to simulation results, the genetic algorithm successfully reduces PAR and power consumption expenses

    A new optimized demand management system for smart grid-based residential buildings adopting renewable and storage energies

    Get PDF
    Demand Side Management (DSM) implies intelligently managing load appliances in a Smart Grid (SG). DSM programs help customers save money by reducing their electricity bills, minimizing the utility’s peak demand, and improving load factor. To achieve these goals, this paper proposes a new load shifting-based optimal DSM model for scheduling residential users’ appliances. The proposed system effectively handles the challenges raised in the literature regarding the absence of using recent, easy, and more robust optimization techniques, a comparison procedure with well-established ones, using Renewable Energy Resources (RERs), Renewable Energy Storage (RES), and adopting consumer comfort. This system uses recent algorithms called Virulence Optimization Algorithm (VOA) and Earth Worm Optimization Algorithm (EWOA) for optimally shifting the time slots of shiftable appliances. The system adopts RERs, RES, as well as utility grid energy for supplying load appliances. This system takes into account user preferences, timing factors for each appliance, and a pricing signal for relocating shiftable appliances to flatten the energy demand profile. In order to figure out how much electricity users will have to pay, a Time Of Use (TOU) dynamic pricing scheme has been used. Using MATLAB simulation environment, we have made effectiveness-based comparisons of the adopted optimization algorithms with the well-established meta-heuristics and evolutionary algorithms (Genetic Algorithm (GA), Cuckoo Search Optimization (CSO), and Binary Particle Swarm Optimization (BPSO) in order to determine the most efficient one. Without adopting RES, the results indicate that VOA outperforms the other algorithms. The VOA enables 59% minimization in Peak-to-Average Ratio (PAR) of consumption energy and is more robust than other competitors. By incorporating RES, the EWOA, alongside the VOA, provides less deviation and a lower PAR. The VOA saves 76.19% of PAR, and the EWOA saves 73.8%, followed by the BPSO, GA, and CSO, respectively. The electricity consumption using VOA and EWOA-based DSM cost 217 and 210 USD cents, respectively, whereas non-scheduled consumption costs 273 USD cents and scheduling based on BPSO, GA, and CSO costs 219, 220, and 222 USD cents.publishedVersio

    Managing the demand in a Micro Grid Based on Load shifting with Controllable Devices Using Hybrid WFS2ACSO Technique

    Get PDF
    The Demand Side Management (DSM) introduced in Smart Grid (SG), which depends on load shifting with huge number of devices is presented in this work. The proposed hybrid strategy is the joint implementation of Wingsuit Flying Search (WFSA) algorithm and Artificial Cell Swarm Optimization (ACSO). The searching behavior of WFSA is enhanced by ACSO. Hence, it is named as WFS2ACSO. This technique aims at minimization of electricity bill, power consumption, and Peak Average Ratio (PAR). The daily load change method presented in this manuscript is utilized for defusing the minimization issues. The present method is performed in SG that constitutes three different types of loads on a residential area, a commercial area, and an industrial area. Simulation results demonstrate that the projected DSM methodology achieves considerable savings, as peak load demand of SG decreases. Further, the variation in PAR levels with and without the DSM methodology is also presented. The proposed model is executed on a MATLAB simulation platform with two case studies based on optimization methods like WFSA, WFS2ACSO). The results obtained present the hybridized algorithm effectiveness as compared with other trendsetting optimization techniques like Ant lion optimization (ALO) and particle swarm optimization (PSO).publishedVersio

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods

    Developing resilient cyber-physical systems: A review of state-of-the-art malware detection approaches, gaps, and future directions

    Get PDF
    Cyber-physical systems (CPSes) are rapidly evolving in critical infrastructure (CI) domains such as smart grid, healthcare, the military, and telecommunication. These systems are continually threatened by malicious software (malware) attacks by adversaries due to their improvised tactics and attack methods. A minor configuration change in a CPS through malware has devastating effects, which the world has seen in Stuxnet, BlackEnergy, Industroyer, and Triton. This paper is a comprehensive review of malware analysis practices currently being used and their limitations and efficacy in securing CPSes. Using well-known real-world incidents, we have covered the significant impacts when a CPS is compromised. In particular, we have prepared exhaustive hypothetical scenarios to discuss the implications of false positives on CPSes. To improve the security of critical systems, we believe that nature-inspired metaheuristic algorithms can effectively counter the overwhelming malware threats geared toward CPSes. However, our detailed review shows that these algorithms have not been adapted to their full potential to counter malicious software. Finally, the gaps identified through this research have led us to propose future research directions using nature-inspired algorithms that would help in bringing optimization by reducing false positives, thereby increasing the security of such systems
    corecore