79 research outputs found

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    In the last decades significant changes in the manufacturing environment have been noticed: moving from a local economy towards a global economy, with markets asking for products with high quality at lower costs, highly customised and with short life cycle. In this environment, the manufacturing enterprises, to avoid the risk to lose competitiveness, search to answer more closely to the customer demands, by improving their flexibility and agility, while maintaining their productivity and quality. Actually, the dynamic response to emergence is becoming a key issue, due to the weak response of the traditional manufacturing control systems to unexpected disturbances, mainly because of the rigidity of their control architectures. In these circumstances, the challenge is to develop manufacturing control systems with autonomy and intelligence capabilities, fast adaptation to the environment changes, more robustness against the occurrence of disturbances, and easier integration of manufacturing resources and legacy systems. Several architectures using emergent concepts and technologies have been proposed, in particular those based in the holonic manufacturing paradigm. Holonic manufacturing is a paradigm based in the ideas of the philosopher Arthur Koestler, who proposed the word holon to describe a basic unit of organisation in biological and social systems. A holon, as Koestler devised the term, is an identifiable part of a (manufacturing) system that has a unique identity, yet is made up of sub-ordinate parts and in turn is part of a larger whole. The introduction of the holonic manufacturing paradigm allows a new approach to the manufacturing problem, bringing the advantages of modularity, decentralisation, autonomy, scalability, and re-use of software components. This dissertation intends to develop an agile and adaptive manufacturing control architecture to face the current requirements imposed to the manufacturing enterprises. The architecture proposed in this dissertation addresses the need for the fast reaction to disturbances at the shop floor level, increasing the agility and flexibility of the enterprise, when it works in volatile environments, characterised by the frequent occurrence of unexpected disturbances. The proposed architecture, designated by ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), is based in the holonic manufacturing paradigm, build upon autonomous and cooperative holons, allowing the development of manufacturing control applications that present all the features of decentralised and holonic systems. ADACOR holonic architecture introduces an adaptive control that balances dynamically between a more centralised structure and a more decentralised one, allowing to combine the global production optimisation with agile reaction to unexpected disturbances. Nas últimas décadas têm-se assistido a mudanças significativas no ambiente de fabrico: evoluindo de uma economia local para um economia global, com os mercados a procurar produtos com elevada qualidade a baixos preços, altamente customizados e com um ciclo de vida curto. Neste ambiente, as empresas de manufactura, para evitar o risco de perda de competitividade, procuram responder às solicitações dos clientes, melhorando a sua flexibilidade e agilidade, mantendo os mesmos índices de produtividade e qualidade. Na verdade, a resposta dinâmica à emergência está a tornar-se num assunto chave, devido `a fraca resposta a perturbações que os sistemas de controlo de fabrico tradicionais apresentam, principalmente devido à rigidez das suas arquitecturas de controlo. Nestas circunstâncias, é fundamental o desenvolvimento de sistemas de controlo de fabrico com capacidades de autonomia e inteligência, rápida adaptação às mudanças, maior robustez à ocorrência de perturbações e fácil integração de recursos físicos e sistemas legados. Diversas arquitecturas usando conceitos e tecnologias emergentes têm sido propostas, em particular algumas baseadas no paradigma da produção holónica. O paradigma da produção holónica é inspirado nas ideias de Arthur Koestler, que propôs a palavra holon para descrever uma unidade básica de organização de sistemas biológicos e sociais. Um holon, de acordo com a definição de Koestler, é uma parte identificável do sistema com identidade única, composta por sub-partes e fazendo simultaneamente parte do todo. A introdução do paradigma da produção holónica permite uma nova abordagem aos sistemas de controlo de fabrico, trazendo vantagens de modularidade, descentralização, autonomia, escalabilidade e reutilização de componentes. Esta dissertação pretende desenvolver uma arquitectura de controlo ágil e adaptativa que suporte os requisitos actuais impostos `as empresas de manufactura. A arquitectura proposta visa a necessidade de uma reacção rápida a perturbações, ao nível da planta fabril, melhorando a flexibilidade e agilidade da empresa quando esta opera em ambientes voláteis, caracterizados pela ocorrência frequente de perturbações inesperadas. A arquitectura proposta, designada por ADACOR (ADAptive holonic COntrol aRchitecture for distributed manufacturing systems), é baseada no paradigma da produção holónica e construída sobre holons autónomos e cooperativos, permitindo o desenvolvimento de aplicações de controlo de fabrico que apresentem todas as características dos sistemas descentralizados e holónicos. A arquitectura holónica ADACOR introduz um controlo adaptativo que balança dinamicamente entre uma estrutura de controlo mais centralizada e uma mais descentralizada, permitindo combinar a optimização da produção com a ágil reacção a perturbações

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    Human cognition inspired procedures for part family formation based on novel Inspection Based Clustering approach

    Get PDF
    Human cognition based procedures are promising approaches for solving different kind or problems, and this paper addresses the part family formation problem inspired by a human cognition procedure through a graph-based approach, drawing on pattern recognition. There are many algorithms which consider nature inspired models for solving a broad range of problem types. However, there is a noticeable existence of a gap in implementing models based on human cognition, which are generally characterized by “visual thinking”, rather than complex mathematical models. Hence, the natural power of reasoning - by detecting the patterns that mimic the natural human cognition - is used in this study as this paper is based on the partial implementation of graph theory in modelling and solving issues related to the grouping of the parts to be processed by one machine, regardless of their size. The obtained results have shown that most of the problems solved by using the proposed approach have provided interesting benchmark results when compared with previous results given by GRASP (Greedy Randomized Adaptive Search Procedure) heuristics.This work has been supported by national funds through FCT - Fundacao para a Ciencia e Tecnologia - under the [UID/CEC/00319/2019] project, and under the RD Units Projects Scopes: UIDP/04077/2020 and UIDB/04077/2020, UIDP/04077/2020 and UIDB/04077/2020

    Reusability in manufacturing, supported by value net and patterns approaches

    Get PDF
    The concept of manufacturing and the need or desire to create artefacts or products is very, very old, yet it is still an essential component of all modem economies. Indeed, manufacturing is one of the few ways that wealth is created. The creation or identification of good quality, sustainable product designs is fundamental to the success of any manufacturing enterprise. Increasingly, there is also a requirement for the manufacturing system which will be used to manufacture the product, to be designed (or redesigned) in parallel with the product design. Many different types of manufacturing knowledge and information will contribute to these designs. A key question therefore for manufacturing companies to address is how to make the very best use of their existing, valuable, knowledge resources. […] The research reported in this thesis examines ways of reusing existing manufacturing knowledge of many types, particularly in the area of manufacturing systems design. The successes and failures of reported reuse programmes are examined, and lessons learnt from their experiences. This research is therefore focused on identifying solutions that address both technical and non-technical requirements simultaneously, to determine ways to facilitate and increase the reuse of manufacturing knowledge in manufacturing system design. [Continues.

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Capability-based adaptation of production systems in a changing environment

    Get PDF
    Today’s production systems have to cope with volatile production environments characterized by frequently changing customer requirements, an increasing number of product variants, small batch sizes, short product life-cycles, the rapid emergence of new technical solutions and increasing regulatory requirements aimed at sustainable manufacturing. These constantly changing requirements call for adaptive and rapidly responding production systems that can adjust to the required changes in processing functions, production capacity and the distribution of the orders. This adaptation is required on the physical, logical and parametric levels. Such adaptivity cannot be achieved without intelligent methodologies, information models and tools to facilitate the adaptation planning and reactive adaptation of the systems. In industry it has been recognized that, because of the often expensive and inefficient adaptation process, companies rarely decide to adapt their production lines. This is mainly due to a lack of sufficient information and documentation about the capabilities of the current system and its lifecycle, as well as a lack of detailed methods for planning the adaptation, which makes it impossible to accurately estimate its scale and cost. Currently, the adaptation of production systems is in practice a human driven process, which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user of the system. This thesis develops a capability-based, computer-aided adaptation methodology, which supports both the human-controlled adaptation planning and the dynamic reactive adaptation of production systems. The methodology consists of three main elements. The first element is the adaptation schema, which illustrates the activities and information flows involved in the overall adaptation planning process and the resources used to support the planning. The adaptation schema forms the backbone of the methodology, guiding the use of other developed elements during both the adaptation planning and reactive adaptation. The second element, which is actually the core of the developed methodology, is the formal ontological resource description used to describe the resources based on their capabilities. The overall resource description utilizes a capability model, which divides the capabilities into simple and combined capabilities. The resources are assigned the simple capabilities they possess. When multiple resources are co-operating, their combined capability can be reasoned out based on the associations defined in the capability model. The adaptation methodology is based on the capability-based matching of product requirements and available system capabilities in the context of the adaptation process. Thus, the third main element developed in this thesis is the framework and rules for performing this capability matching. The approach allows automatic information filtering and the generation of system configuration scenarios for the given requirements, thus facilitating the rapid allocation of resources and the adaptation of systems. Human intelligence is used to validate the automatically-generated scenarios and to select the best one, based on the desired criteria. Based on these results, an approach to evaluating the compatibility of an existing production system with different product requirements has been formulated. This approach evaluates the impact any changes in these requirements may have on the production system. The impact of the changes is illustrated in the form of compatibility graphs, which enable comparison between different product scenarios in terms of the effort required to implement the system adaptation, and the extent to which the current system can be utilized to meet the new requirements. It thus aids in making decisions regarding product and production strategies and adaptation
    corecore