79 research outputs found

    Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool

    Get PDF
    [EN] This paper introduces a novel quality estimator that uses different metrics to decide the best path towards the root in Wireless Sensor Networks. The different metrics are assessed at medium access control layer (MAC), under the IEEE 802.15.4 standard, and are used at network layer, enhancing the best path selection process done by the routing protocol, and at the application layer, enabling visual quality indicators in the nodes. This quality function is used during deployment stage; ensuring nodes are located optimally and nimbly. This mechanism will help WSN¿s adoption in Industrial Internet of Things applications.This work is supported by IVACE (Insituto Valenciano de Competitividad Empresarial) through FEDER funding (exp. IMDEEA/2017/103).Vera-Pérez, J.; Todoli Ferrandis, D.; Santonja Climent, S.; Silvestre-Blanes, J.; Sempere Paya, VM. (2018). Path Quality Estimator for 802.15.4e TSCH Fast Deployment Tool. Telfor Journal (Online). 10(1):2-7. https://doi.org/10.5937/telfor1801002VS27101O. Gaddour, A. Koubâa, S. Chaudhry, M. Tezeghdanti, R. Chaari and M. Abid, 'Simulation and Performance Evaluation of DAG Construction with RPL,' in IEEE Third International Conference on Communications and Networking (ComNet), pp. 1-8, 2012.;IETF, 'RFC 6552 - Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL),' 2012.;IETF, 'RFC 6719 - The Minimum Rank with Hysteresis Objective Function,' 2012.;N. Pradeska, Widyawan, W. Najib and S. S. Kusumawardani, 'Performance Analysis of Objective Function MRHOF and OF0 in Routing Protocol RPL IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN),' in 8th International Conference on Information Technology and Electrical Engineering (ICITEE), Yogyakarta, Indonesia, 2016.;P. O. Kamgueu, E. Nataf, T. D. Ndié and O. Festor, 'Energy-based routing metric for RPL,' Doctoral dissertation, INRIA, 2013.;H.-S. Kim, J. Paek and S. Bahk, 'QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications,' in 12th Annual IEEE International Conference on Sensing, Communication and Networking (SECON), Seattle, WA, USA, 2015.;P. Gonizzi, R. Monica and G. Ferrari, 'Design and evaluation of a delay-efficient RPL routing metric,' in 9th International Wireless Communication and Mobile Computing Conference (IWCMC), Sardinia, Italy, 2013.;IETF, 'RFC 6551 - Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks,' 2012.;N. Baccour, A. Koubâa, L. Mottola, M. A. Zúñiga, H. Youssef, C. A. Boano and M. Alves, 'Radio link quality estimation in wireless sensor networks: A survey,' ACM Transactions on Sensor Networks (TOSN), vol. 8 (4), 2012.;P. Karkazis, H. C. Leligou, L. Sarakis, T. Zahariadis, P. Trakadas, T. H. Velivassaki and C. Capsalis, 'Design of primary and composite routing metrics for RPL-compliant Wireless Sensor Networks,' in International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, 2012.;N. Baccour, A. Koubâa, H. Youssef, M. B. Jamâa, D. d. Rosário, M. Alves and L. B. Becker, 'F-LQE: A Fuzzy Link Quality Estimator for Wireless Sensor Networks,' in European Conference on Wireless Sensor Networks (EWSN), Coimbra, Portugal, 2010.;S. Rekik, N. Baccour, M. Jmaiel and K. Drira, 'Holistic link quality estimation-based routing metric for RPL networks in smart grids,' in IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 2016.;O. Gaddour, A. Koubaa, N. Baccour and M. Abid, 'OF-FL: QoSaware fuzzy logic objective function for the RPL routing protocol,' in 12th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Hammamet, Tunisia, 2014.;IETF, 'RFC 8180 - Minimal IPv6 over TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration,' 2017.;M. G. Amor, A. Koubâa, E. Tovar and M. Khalgui, 'Cyber-OF: An Adaptative Cyber-Physical Objective Function for Smart Cities Applications,' in 28th Euromicro Conference on Real-Time Systems (ECRTS), Toulouse, France, 2016.;J. Vera-Pérez, D. Todolí-Ferrandis, J. Silvestre-Blanes, S. SantonjaCliment and V. Sempere-Paya, 'Path quality estimator for wireless sensor networks fast deployment tool,' 2017 25th Telecommunication Forum (TELFOR), Belgrade, 2017, pp. 1-4.

    Survey on RPL enhancements: a focus on topology, security and mobility

    Get PDF
    International audienceA few years ago, the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) was proposed by IETF as the routing standard designed for classes of networks in which both nodes and their interconnects are constrained. Since then, great attention has been paid by the scientific and industrial communities for the protocol evaluation and improvement. Indeed, depending on applications scenarios, constraints related to the target environments or other requirements, many adaptations and improvements can be made. So, since the initial release of the standard, several implementations were proposed, some targeting specific optimization goals whereas others would optimize several criteria while building the routing topology. They include, but are not limited to, extending the network lifetime, maximizing throughput at the sink node, avoiding the less secured nodes, considering nodes or sink mobility. Sometimes, to consider the Quality of Service (QoS), it is necessary to consider several of those criteria at the same time. This paper reviews recent works on RPL and highlights major contributions to its improvement, especially those related to topology optimization, security and mobility. We aim to provide an insight into relevant efforts around the protocol, draw some lessons and give useful guidelines for future developments

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area

    A Survey of Limitations and Enhancements of the IPv6 Routing Protocol for Low-power and Lossy Networks: A Focus on Core Operations

    Get PDF
    Driven by the special requirements of the Low-power and Lossy Networks (LLNs), the IPv6 Routing Protocol for LLNs (RPL) was standardized by the IETF some six years ago to tackle the routing issue in such networks. Since its introduction, however, numerous studies have pointed out that, in its current form, RPL suffers from issues that limit its efficiency and domain of applicability. Thus, several solutions have been proposed in the literature in an attempt to overcome these identified limitations. In this survey, we aim mainly to provide a comprehensive review of these research proposals assessing whether such proposals have succeeded in overcoming the standard reported limitations related to its core operations. Although some of RPL’s weaknesses have been addressed successfully, the study found that the proposed solutions remain deficient in overcoming several others. Hence, the study investigates where such proposals still fall short, the challenges and pitfalls to avoid, thus would help researchers formulate a clear foundation for the development of further successful extensions in future allowing the protocol to be applied more widely

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area. **Please note that there are multiple authors for this article therefore only the name of the first 5 including Federation University Australia affiliate “Muhammad Imran” is provided in this record*

    Efficient Routing Primitives for Low-power and Lossy Networks in Internet of Things

    Get PDF
    At the heart of the Internet of Things (IoTs) are the Low-power and Lossy networks (LLNs), a collection of interconnected battery-operated and resource-constrained tiny devices that enable the realization of a wide range of applications in multiple domains. For an efficient operation, such networks require the design of efficient protocols especially at the network layer of their communication stack. In this regards, the Routing Protocol for LLNs (RPL) has been developed and standardised by the IETF to fulfil the routing requirements in such networks. Proven efficient in tackling some major issues, RPL is still far from being optimal in addressing several other routing gaps in the context of LLNs. For instance, the RPL standard lacks in a scalable routing mechanism in the applications that require bidirectional communication. In addition, its routing maintenance mechanism suffers from relatively slow convergence time, limiting the applicability of the protocol in time-critical applications, and a high risk of incorrect configurations of its parameters, risking the creation of sub-optimal routes. Furthermore, RPL lacks in a fair load-distribution mechanism which may harm both energy and reliability of its networks. Motivated by the above-mentioned issues, this thesis aimed at overcoming the RPL’s weaknesses by developing more efficient routing solutions, paving the way towards successful deployments and operations of the LLNs at different scales. Hence, to tackle the inefficiency of RPL’s routing maintenance operations, a new routing maintenance algorithm, namely, Drizzle, has been developed characterized by an adaptive, robust and configurable nature that boosts the applicability of RPL in several applications. To address the scalability problem, a new downward routing solution has been developed rendering RPL more efficient in large-scale networks. Finally, a load-balancing objective function for RPL has been proposed that enhances both the energy efficiency and reliability of LLNs. The efficiency of the proposed solutions has been validated through extensive simulation experiments under different scenarios and operation conditions demonstrating significant performance enhancements in terms of convergence time, scalability, reliability, and power consumption

    EC-CENTRIC: An Energy- and Context-Centric Perspective on IoT Systems and Protocol Design

    Get PDF
    The radio transceiver of an IoT device is often where most of the energy is consumed. For this reason, most research so far has focused on low power circuit and energy efficient physical layer designs, with the goal of reducing the average energy per information bit required for communication. While these efforts are valuable per se, their actual effectiveness can be partially neutralized by ill-designed network, processing and resource management solutions, which can become a primary factor of performance degradation, in terms of throughput, responsiveness and energy efficiency. The objective of this paper is to describe an energy-centric and context-aware optimization framework that accounts for the energy impact of the fundamental functionalities of an IoT system and that proceeds along three main technical thrusts: 1) balancing signal-dependent processing techniques (compression and feature extraction) and communication tasks; 2) jointly designing channel access and routing protocols to maximize the network lifetime; 3) providing self-adaptability to different operating conditions through the adoption of suitable learning architectures and of flexible/reconfigurable algorithms and protocols. After discussing this framework, we present some preliminary results that validate the effectiveness of our proposed line of action, and show how the use of adaptive signal processing and channel access techniques allows an IoT network to dynamically tune lifetime for signal distortion, according to the requirements dictated by the application
    • …
    corecore