74 research outputs found

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Virtual Pseudonym-Changing and Dynamic Grouping Policy for Privacy Preservation in VANETs

    Get PDF
    Location privacy is a critical problem in the vehicular communication networks. Vehicles broadcast their road status information to other entities in the network through beacon messages to inform other entities in the network. The beacon message content consists of the vehicle ID, speed, direction, position, and other information. An adversary could use vehicle identity and positioning information to determine vehicle driver behavior and identity at different visited location spots. A pseudonym can be used instead of the vehicle ID to help in the vehicle location privacy. These pseudonyms should be changed in appropriate way to produce uncertainty for any adversary attempting to identify a vehicle at different locations. In the existing research literature, pseudonyms are changed during silent mode between neighbors. However, the use of a short silent period and the visibility of pseudonyms of direct neighbors provides a mechanism for an adversary to determine the identity of a target vehicle at specific locations. Moreover, privacy is provided to the driver, only within the RSU range; outside it, there is no privacy protection. In this research, we address the problem of location privacy in a highway scenario, where vehicles are traveling at high speeds with diverse traffic density. We propose a Dynamic Grouping and Virtual Pseudonym-Changing (DGVP) scheme for vehicle location privacy. Dynamic groups are formed based on similar status vehicles and cooperatively change pseudonyms. In the case of low traffic density, we use a virtual pseudonym update process. We formally present the model and specify the scheme through High-Level Petri Nets (HLPN). The simulation results indicate that the proposed method improves the anonymity set size and entropy, provides lower traceability, reduces impact on vehicular network applications, and has lower computation cost compared to existing research work

    Future cities and autonomous vehicles: analysis of the barriers to full adoption

    Get PDF
    The inevitable upcoming technology of autonomous vehicles (AVs) will affect our cities and several aspects of our lives. The widespread adoption of AVs repose at crossing distinct barriers that prevent their full adoption. This paper presents a critical review of recent debates about AVs and analyse the key barriers to their full adoption. This study has employed a mixed research methodology on a selected database of recently published research works. Thus, the outcomes of this review integrate the barriers into two main categories; (1) User/Government perspectives that include (i) Users' acceptance and behaviour, (ii) Safety, and (iii) Legislation. (2) Information and Communication Technologies (ICT) which include (i) Computer software and hardware, (ii) Communication systems V2X, and (iii) accurate positioning and mapping. Furthermore, a framework of barriers and their relations to AVs system architecture has been suggested to support future research and technology development

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems

    Get PDF
    Semi-autonomous driver assists are already widely deployed and fully autonomous cars are progressively leaving the realm of laboratories. This evolution coexists with a progressive connectivity and cooperation, creating important safety and security challenges, the latter ranging from casual hackers to highly-skilled attackers, requiring a holistic analysis, under the perspective of fully-fledged ecosystems of autonomous and cooperative vehicles. This position paper attempts at contributing to a better understanding of the global threat plane and the specific threat vectors designers should be at- tentive to. We survey paradigms and mechanisms that may be used to overcome or at least mitigate the potential risks that may arise through the several threat vectors analyzed

    A distributed mix-context-based method for location privacy in road networks

    Get PDF
    Preserving location privacy is increasingly an essential concern in Vehicular Adhoc Networks (VANETs). Vehicles broadcast beacon messages in an open form that contains information including vehicle identity, speed, location, and other headings. An adversary may track the various locations visited by a vehicle using sensitive information transmitted in beacons such as vehicle identity and location. By matching the vehicle identity used in beacon messages at various locations, an adversary learns the location history of a vehicle. This compromises the privacy of the vehicle driver. In existing research work, pseudonyms are used in place of the actual vehicle identity in the beacons. Pseudonyms should be changed regularly to safeguard the location privacy of vehicles. However, applying simple change in pseudonyms does not always provide location privacy. Existing schemes based on mix zones operate efficiently in higher traffic environments but fail to provide privacy in lower vehicle traffic densities. In this paper, we take the problem of location privacy in diverse vehicle traffic densities. We propose a new Crowd-based Mix Context (CMC) privacy scheme that provides location privacy as well as identity protection in various vehicle traffic densities. The pseudonym changing process utilizes context information of road such as speed, direction and the number of neighbors in transmission range for the anonymisation of vehicles, adaptively updating pseudonyms based on the number of a vehicle neighbors in the vicinity. We conduct formal modeling and specification of the proposed scheme using High-Level Petri Nets (HPLN). Simulation results validate the effectiveness of CMC in terms of location anonymisation, the probability of vehicle traceability, computation time (cost) and effect on vehicular applications

    Cyber Threats Facing Autonomous and Connected Vehicles: Future Challenges

    Get PDF
    Vehicles are currently being developed and sold with increasing levels of connectivity and automation. As with all networked computing devices, increased connectivity often results in a heightened risk of a cyber security attack. Furthermore, increased automation exacerbates any risk by increasing the opportunities for the adversary to implement a successful attack. In this paper, a large volume of publicly accessible literature is reviewed and compartmentalised based on the vulnerabilities identified and mitigation techniques developed. This review highlighted that the majority of research is reactive and vulnerabilities are often discovered by friendly adversaries (white-hat hackers). Many gaps in the knowledge base were identified. Priority should be given to address these knowledge gaps to minimise future cyber security risks in the connected and autonomous vehicle sector
    corecore