31,924 research outputs found

    Fixed Point and Aperiodic Tilings

    Get PDF
    An aperiodic tile set was first constructed by R.Berger while proving the undecidability of the domino problem. It turned out that aperiodic tile sets appear in many topics ranging from logic (the Entscheidungsproblem) to physics (quasicrystals) We present a new construction of an aperiodic tile set that is based on Kleene's fixed-point construction instead of geometric arguments. This construction is similar to J. von Neumann self-reproducing automata; similar ideas were also used by P. Gacs in the context of error-correcting computations. The flexibility of this construction allows us to construct a "robust" aperiodic tile set that does not have periodic (or close to periodic) tilings even if we allow some (sparse enough) tiling errors. This property was not known for any of the existing aperiodic tile sets.Comment: v5: technical revision (positions of figures are shifted

    Complex patterns on the plane: different types of basin fractalization in a two-dimensional mapping

    Full text link
    Basins generated by a noninvertible mapping formed by two symmetrically coupled logistic maps are studied when the only parameter \lambda of the system is modified. Complex patterns on the plane are visualised as a consequence of basins' bifurcations. According to the already established nomenclature in the literature, we present the relevant phenomenology organised in different scenarios: fractal islands disaggregation, finite disaggregation, infinitely disconnected basin, infinitely many converging sequences of lakes, countable self-similar disaggregation and sharp fractal boundary. By use of critical curves, we determine the influence of zones with different number of first rank preimages in the mechanisms of basin fractalization.Comment: 19 pages, 11 figure

    Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos

    Full text link
    The most general and versatile defining feature of quantum chaotic systems is that they possess an energy spectrum with correlations universally described by random matrix theory (RMT). This feature can be exhibited by systems with a well defined classical limit as well as by systems with no classical correspondence, such as locally interacting spins or fermions. Despite great phenomenological success, a general mechanism explaining the emergence of RMT without reference to semiclassical concepts is still missing. Here we provide the example of a quantum many-body system with no semiclassical limit (no large parameter) where the emergence of RMT spectral correlations is proven exactly. Specifically, we consider a periodically driven Ising model and write the Fourier transform of spectral density's two-point function, the spectral form factor, in terms of a partition function of a two-dimensional classical Ising model featuring a space-time duality. We show that the self-dual cases provide a minimal model of many-body quantum chaos, where the spectral form factor is demonstrated to match RMT for all values of the integer time variable tt in the thermodynamic limit. In particular, we rigorously prove RMT form factor for odd tt, while we formulate a precise conjecture for even tt. The results imply ergodicity for any finite amount of disorder in the longitudinal field, rigorously excluding the possibility of many-body localization. Our method provides a novel route for obtaining exact nonperturbative results in non-integrable systems.Comment: 6 + 22 pages, 3 figures; v2: improved presentation of the proofs in the appendices; v3: as appears in Physical Review Letter

    Recent advances in open billiards with some open problems

    Full text link
    Much recent interest has focused on "open" dynamical systems, in which a classical map or flow is considered only until the trajectory reaches a "hole", at which the dynamics is no longer considered. Here we consider questions pertaining to the survival probability as a function of time, given an initial measure on phase space. We focus on the case of billiard dynamics, namely that of a point particle moving with constant velocity except for mirror-like reflections at the boundary, and give a number of recent results, physical applications and open problems.Comment: 16 pages, 1 figure in six parts. To appear in Frontiers in the study of chaotic dynamical systems with open problems (Ed. Z. Elhadj and J. C. Sprott, World Scientific
    • 

    corecore