392 research outputs found

    Visualization of Publication Impact

    Full text link
    Measuring scholarly impact has been a topic of much interest in recent years. While many use the citation count as a primary indicator of a publications impact, the quality and impact of those citations will vary. Additionally, it is often difficult to see where a paper sits among other papers in the same research area. Questions we wished to answer through this visualization were: is a publication cited less than publications in the field?; is a publication cited by high or low impact publications?; and can we visually compare the impact of publications across a result set? In this work we address the above questions through a new visualization of publication impact. Our technique has been applied to the visualization of citation information in INSPIREHEP (http://www.inspirehep.net), the largest high energy physics publication repository

    Computing Hive Plots: A Combinatorial Framework

    Full text link
    Hive plots are a graph visualization style placing vertices on a set of radial axes emanating from a common center and drawing edges as smooth curves connecting their respective endpoints. In previous work on hive plots, assignment to an axis and vertex positions on each axis were determined based on selected vertex attributes and the order of axes was prespecified. Here, we present a new framework focusing on combinatorial aspects of these drawings to extend the original hive plot idea and optimize visual properties such as the total edge length and the number of edge crossings in the resulting hive plots. Our framework comprises three steps: (1) partition the vertices into multiple groups, each corresponding to an axis of the hive plot; (2) optimize the cyclic axis order to bring more strongly connected groups near each other; (3) optimize the vertex ordering on each axis to minimize edge crossings. Each of the three steps is related to a well-studied, but NP-complete computational problem. We combine and adapt suitable algorithmic approaches, implement them as an instantiation of our framework and show in a case study how it can be applied in a practical setting. Furthermore, we conduct computational experiments to gain further insights regarding algorithmic choices of the framework. The code of the implementation and a prototype web application can be found on OSF.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023

    Dynamic Visualisation of Many-Objective Populations

    Get PDF
    This is the author accepted manuscript. The final version is available from the Operational Research SocietyThere has been an increase in research activity recently regarding the visualisation of many-objective populations. Two of the main drivers for this have been (i) to aid decision makers in comparing and selecting designs returned from a many-objective optimisation run, and (ii) to help in the selection of solutions in interactive optimisation. In both of these situations there is often a dynamic element – populations evolving over time change their relative relationships, and the quality comparison measure itself can be altered, redefining member relations. Here we illustrate how a number of existing visualisations from various domains may be applied to many-objective populations to aid the understanding of population relations using the d3 package. d3 is inherently dynamic, and will automatically respond to any changes in the base document underpinning the visualisation, allowing the visualisation package to 'bolt-on' to any other program that can produce or update the underlying file

    Nine Quick Tips for Analyzing Network Data

    Get PDF
    These tips provide a quick and concentrated guide for beginners in the analysis of network data

    Firewall Rule Set Analysis and Visualization

    Get PDF
    abstract: A firewall is a necessary component for network security and just like any regular equipment it requires maintenance. To keep up with changing cyber security trends and threats, firewall rules are modified frequently. Over time such modifications increase the complexity, size and verbosity of firewall rules. As the rule set grows in size, adding and modifying rule becomes a tedious task. This discourages network administrators to review the work done by previous administrators before and after applying any changes. As a result the quality and efficiency of the firewall goes down. Modification and addition of rules without knowledge of previous rules creates anomalies like shadowing and rule redundancy. Anomalous rule sets not only limit the efficiency of the firewall but in some cases create a hole in the perimeter security. Detection of anomalies has been studied for a long time and some well established procedures have been implemented and tested. But they all have a common problem of visualizing the results. When it comes to visualization of firewall anomalies, the results do not fit in traditional matrix, tree or sunburst representations. This research targets the anomaly detection and visualization problem. It analyzes and represents firewall rule anomalies in innovative ways such as hive plots and dynamic slices. Such graphical representations of rule anomalies are useful in understanding the state of a firewall. It also helps network administrators in finding and fixing the anomalous rules.Dissertation/ThesisMasters Thesis Computer Science 201

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationships between entities in real-world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real-world datasets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization there are many systems which visualize datasets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks, and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them

    Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future.

    Get PDF
    "Α picture is worth a thousand words." This widely used adage sums up in a few words the notion that a successful visual representation of a concept should enable easy and rapid absorption of large amounts of information. Although, in general, the notion of capturing complex ideas using images is very appealing, would 1000 words be enough to describe the unknown in a research field such as the life sciences? Life sciences is one of the biggest generators of enormous datasets, mainly as a result of recent and rapid technological advances; their complexity can make these datasets incomprehensible without effective visualization methods. Here we discuss the past, present and future of genomic and systems biology visualization. We briefly comment on many visualization and analysis tools and the purposes that they serve. We focus on the latest libraries and programming languages that enable more effective, efficient and faster approaches for visualizing biological concepts, and also comment on the future human-computer interaction trends that would enable for enhancing visualization further

    SynVisio: A Multiscale Tool to Explore Genomic Conservation

    Get PDF
    Comparative analysis of genomes is an important area in biological research that can shed light on an organism's internal functions and evolutionary history. It involves comparing two or more genomes to identify similar regions that can indicate shared ancestry and in turn conservation of genetic information. Due to rapid advancements in sequencing systems, high-resolution genome data is readily available for a wide range of species, and comparative analysis of this data can offer crucial evolutionary insights that can be applied in plant breeding and medical research. Visualizing the location, size, and orientation of conserved regions can assist biological researchers in comparative analysis as it is a tedious process that requires extensive manual interpretation and human judgement. However, visualization tools for the analysis of conserved regions have not kept pace with the increasing availability of information and are not designed to support the diverse use cases of researchers. To address this we gathered feedback from experts in the field, and designed improvements for these tools through novel interaction techniques and visual representations. We then developed SynVisio, a web-based tool for exploring conserved regions at multiple resolutions (genome, chromosome, or gene), with several visual representations and interactive features, to meet the diverse needs of genome researchers. SynVisio supports multi-resolution analysis and interactive filtering as researchers move deeper into the genome. It also supports revisitation to specific interface configurations, and enables loosely-coupled collaboration over the genomic data. An evaluation of the system with five researchers from three expert groups coupled with a longitudinal study of web traffic to the system provides evidence about the success of our system's novel features for interactive exploration of conservation
    corecore