51 research outputs found

    ON PARAMETERIZED COMPLEXITY OF HITTING SET PROBLEM FOR AXIS–PARALLEL SQUARES INTERSECTING A STRAIGHT LINE

    Get PDF
    The Hitting Set Problem (HSP) is the well known extremal problem adopting research interest in the fields of combinatorial optimization, computational geometry, and statistical learning theory for decades. In the general setting, the problem is NP-hard and hardly approximable. Also, the HSP remains intractable even in very specific geometric settings, e.g. for axis-parallel rectangles intersecting a given straight line. Recently, for the special case of the problem, where all the rectangles are unit squares, a polynomial but very time consuming optimal algorithm was proposed. We improve this algorithm to decrease its complexity bound more than 100 degrees of magnitude. Also, we extend it to the more general case of the problem  and show that the geometric HSP for axis-parallel (not necessarily unit) squares intersected by a line is polynomially solvable for any fixed range of squares to hit

    Approximation Algorithms for Geometric Clustering and Touring Problems

    Get PDF
    Clustering and touring are two fundamental topics in optimization that have been studied extensively and have ``launched a thousand ships''. In this thesis, we study variants of these problems for Euclidean instances, in which clusters often correspond to sensors that are required to cover, measure or localize targets and tours need to visit locations for the purpose of item delivery or data collection. In the first part of the thesis, we focus on the task of sensor placement for environments in which localization is a necessity and in which its quality depends on the relative angle between the target and the pair of sensors observing it. We formulate a new coverage constraint that bounds this angle and consider the problem of placing a small number of sensors that satisfy it in addition to classical ones such as proximity and line-of-sight visibility. We present a general framework that chooses a small number of sensors and approximates the coverage constraint to arbitrary precision. In the second part of the thesis, we consider the task of collecting data from a set of sensors by getting close to them. This corresponds to a well-known generalization of the Traveling Salesman Problem (TSP) called TSP with Neighborhoods, in which we want to compute a shortest tour that visits at least one point from each unit disk centered at a sensor. One approach is based on an observation that relates the optimal solution with the optimal TSP on the sensors. We show that the associated bound can be improved unless we are in certain exceptional circumstances for which we can get better algorithms. Finally, we discuss Maximum Scatter TSP, which asks for a tour that maximizes the length of the shortest edge. While the Euclidean version admits an efficient approximation scheme and the problem is known to be NP-hard in three dimensions or higher, the question of getting a polynomial time algorithm for two dimensions remains open. To this end, we develop a general technique for the case of points concentrated around the boundary of a circle that we believe can be extended to more general cases

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Algorithms for Geometric Covering and Piercing Problems

    Get PDF
    This thesis involves the study of a range of geometric covering and piercing problems, where the unifying thread is approximation using disks. While some of the problems addressed in this work are solved exactly with polynomial time algorithms, many problems are shown to be at least NP-hard. For the latter, approximation algorithms are the best that we can do in polynomial time assuming that P is not equal to NP. One of the best known problems involving unit disks is the Discrete Unit Disk Cover (DUDC) problem, in which the input consists of a set of points P and a set of unit disks in the plane D, and the objective is to compute a subset of the disks of minimum cardinality which covers all of the points. Another perspective on the problem is to consider the centre points (denoted Q) of the disks D as an approximating set of points for P. An optimal solution to DUDC provides a minimal cardinality subset Q*, a subset of Q, so that each point in P is within unit distance of a point in Q*. In order to approximate the general DUDC problem, we also examine several restricted variants. In the Line-Separable Discrete Unit Disk Cover (LSDUDC) problem, P and Q are separated by a line in the plane. We write that l^- is the half-plane defined by l containing P, and l^+ is the half-plane containing Q. LSDUDC may be solved exactly in O(m^2n) time using a greedy algorithm. We augment this result by describing a 2-approximate solution for the Assisted LSDUDC problem, where the union of all disks centred in l^+ covers all points in P, but we consider using disks centred in l^- as well to try to improve the solution. Next, we describe the Within-Strip Discrete Unit Disk Cover (WSDUDC) problem, where P and Q are confined to a strip of the plane of height h. We show that this problem is NP-complete, and we provide a range of approximation algorithms for the problem with trade-offs between the approximation factor and running time. We outline approximation algorithms for the general DUDC problem which make use of the algorithms for LSDUDC and WSDUDC. These results provide the fastest known approximation algorithms for DUDC. As with the WSDUDC results, we present a set of algorithms in which better approximation factors may be had at the expense of greater running time, ranging from a 15-approximate algorithm which runs in O(mn + m log m + n log n) time to a 18-approximate algorithm which runs in O(m^6n+n log n) time. The next problems that we study are Hausdorff Core problems. These problems accept an input polygon P, and we seek a convex polygon Q which is fully contained in P and minimizes the Hausdorff distance between P and Q. Interestingly, we show that this problem may be reduced to that of computing the minimum radius of disk, call it k_opt, so that a convex polygon Q contained in P intersects all disks of radius k_opt centred on the vertices of P. We begin by describing a polynomial time algorithm for the simple case where P has only a single reflex vertex. On general polygons, we provide a parameterized algorithm which performs a parametric search on the possible values of k_opt. The solution to the decision version of the problem, i.e. determining whether there exists a Hausdorff Core for P given k_opt, requires some novel insights. We also describe an FPTAS for the decision version of the Hausdorff Core problem. Finally, we study Generalized Minimum Spanning Tree (GMST) problems, where the input consists of imprecise vertices, and the objective is to select a single point from each imprecise vertex in order to optimize the weight of the MST over the points. In keeping with one of the themes of the thesis, we begin by using disks as the imprecise vertices. We show that the minimization and maximization versions of this problem are NP-hard, and we describe some parameterized and approximation algorithms. Finally, we look at the case where the imprecise vertices consist of just two vertices each, and we show that the minimization version of the problem (which we call 2-GMST) remains NP-hard, even in the plane. We also provide an algorithm to solve the 2-GMST problem exactly if the combinatorial structure of the optimal solution is known. We identify a number of open problems in this thesis that are worthy of further study. Among them: Is the Assisted LSDUDC problem NP-complete? Can the WSDUDC results be used to obtain an improved PTAS for DUDC? Are there classes of polygons for which the determination of the Hausdorff Core is easy? Is there a PTAS for the maximum weight GMST problem on (unit) disks? Is there a combinatorial approximation algorithm for the 2-GMST problem (particularly with an approximation factor under 4)

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Large bichromatic point sets admit empty monochromatic 4-gons

    No full text
    We consider a variation of a problem stated by Erd˝os and Szekeres in 1935 about the existence of a number fES(k) such that any set S of at least fES(k) points in general position in the plane has a subset of k points that are the vertices of a convex k-gon. In our setting the points of S are colored, and we say that a (not necessarily convex) spanned polygon is monochromatic if all its vertices have the same color. Moreover, a polygon is called empty if it does not contain any points of S in its interior. We show that any bichromatic set of n ≥ 5044 points in R2 in general position determines at least one empty, monochromatic quadrilateral (and thus linearly many).Postprint (published version

    LIPIcs, Volume 244, ESA 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 244, ESA 2022, Complete Volum

    Proceedings of the 84th European Study Group Mathematics with Industry (SWI 2012), Eindhoven, January 30 - February 3, 2012

    Get PDF
    Introduction There are a few welldefined moments when mathematicians can get in contact with relevant unsolved problems proposed by the industry. One such a moment is the socalled "Study Group". The concept of the Study Group is rather simple and quite efficient: A group of mathematicians (of very different expertise) work together for one week. As a rule, on a Monday the industrial problems are presented by their owners, then few research groups selforganize around the proposed problems and work intensively until Friday, when the main findings are presented. The insight obtained via mathematical modeling together with the transfer of suitable mathematical technology usually lead the groups to adequate approximate solutions. As a direct consequence of this fact, the problem owners often decide to benefit more from such knowledge transfer and suggest related followup projects. In the period January 31– February 3, 2012, it was the turn of the Department of Mathematics and Computer Science of the Eindhoven University of Technology to organize and to host the "Studiegroep Wiskunde met de Industrie/Study Group Mathematics with the Industry" (shortly: SWI 2012, but also referred to as ESG 84, or as the 84th European Study Group with Industry). This was the occasion when about 80 mathematicians enjoyed working on six problems. Most of the participants were coming from a Dutch university, while a few were from abroad (e.g. from UK, Germany, France, India, Russia, Georgia, Turkey, India, and Sri Lanka). The open industrial problems were proposed by Endinet, Philips Lighting, Thales, Marin, Tata Steel, and Bartels Engineering. Their solutions are shown in this proceedings. They combine ingenious mathematical modeling with specific mathematical tools like geometric algorithms, combinatorial optimization of networks, identification of parameters and model structures, probability theory, and statistical data analysis. It is worth mentioning that this scientific proceedings is accompanied by a popular proceedings, written by Ionica Smeets, containing layman’s descriptions of the proposed problems and of the corresponding results
    corecore