160 research outputs found

    On Brambles, Grid-Like Minors, and Parameterized Intractability of Monadic Second-Order Logic

    Full text link
    Brambles were introduced as the dual notion to treewidth, one of the most central concepts of the graph minor theory of Robertson and Seymour. Recently, Grohe and Marx showed that there are graphs G, in which every bramble of order larger than the square root of the treewidth is of exponential size in |G|. On the positive side, they show the existence of polynomial-sized brambles of the order of the square root of the treewidth, up to log factors. We provide the first polynomial time algorithm to construct a bramble in general graphs and achieve this bound, up to log-factors. We use this algorithm to construct grid-like minors, a replacement structure for grid-minors recently introduced by Reed and Wood, in polynomial time. Using the grid-like minors, we introduce the notion of a perfect bramble and an algorithm to find one in polynomial time. Perfect brambles are brambles with a particularly simple structure and they also provide us with a subgraph that has bounded degree and still large treewidth; we use them to obtain a meta-theorem on deciding certain parameterized subgraph-closed problems on general graphs in time singly exponential in the parameter. The second part of our work deals with providing a lower bound to Courcelle's famous theorem, stating that every graph property that can be expressed by a sentence in monadic second-order logic (MSO), can be decided by a linear time algorithm on classes of graphs of bounded treewidth. Using our results from the first part of our work we establish a strong lower bound for tractability of MSO on classes of colored graphs

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes

    Optimal Algorithms for Hitting (Topological) Minors on Graphs of Bounded Treewidth

    Get PDF
    For a fixed collection of graphs F, the F-M-DELETION problem consists in, given a graph G and an integer k, decide whether there exists a subset S of V(G) of size at most k such that G-S does not contain any of the graphs in F as a minor. We are interested in the parameterized complexity of F-M-DELETION when the parameter is the treewidth of G, denoted by tw. Our objective is to determine, for a fixed F}, the smallest function f_F such that F-M-DELETION can be solved in time f_F(tw)n^{O(1)} on n-vertex graphs. Using and enhancing the machinery of boundaried graphs and small sets of representatives introduced by Bodlaender et al. [J ACM, 2016], we prove that when all the graphs in F are connected and at least one of them is planar, then f_F(w) = 2^{O(wlog w)}. When F is a singleton containing a clique, a cycle, or a path on i vertices, we prove the following asymptotically tight bounds: - f_{K_4}(w) = 2^{Theta(wlog w)}. - f_{C_i}(w) = 2^{Theta(w)} for every i4. - f_{P_i}(w) = 2^{Theta(w)} for every i5. The lower bounds hold unless the Exponential Time Hypothesis fails, and the superexponential ones are inspired by a reduction of Marcin Pilipczuk [Discrete Appl Math, 2016]. The single-exponential algorithms use, in particular, the rank-based approach introduced by Bodlaender et al. [Inform Comput, 2015]. We also consider the version of the problem where the graphs in F are forbidden as topological minors, and prove essentially the same set of results holds

    An FPT 2-Approximation for Tree-Cut Decomposition

    Full text link
    The tree-cut width of a graph is a graph parameter defined by Wollan [J. Comb. Theory, Ser. B, 110:47-66, 2015] with the help of tree-cut decompositions. In certain cases, tree-cut width appears to be more adequate than treewidth as an invariant that, when bounded, can accelerate the resolution of intractable problems. While designing algorithms for problems with bounded tree-cut width, it is important to have a parametrically tractable way to compute the exact value of this parameter or, at least, some constant approximation of it. In this paper we give a parameterized 2-approximation algorithm for the computation of tree-cut width; for an input nn-vertex graph GG and an integer ww, our algorithm either confirms that the tree-cut width of GG is more than ww or returns a tree-cut decomposition of GG certifying that its tree-cut width is at most 2w2w, in time 2O(w2logw)n22^{O(w^2\log w)} \cdot n^2. Prior to this work, no constructive parameterized algorithms, even approximated ones, existed for computing the tree-cut width of a graph. As a consequence of the Graph Minors series by Robertson and Seymour, only the existence of a decision algorithm was known.Comment: 17 pages, 3 figure

    Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

    Get PDF
    For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S ? V(G) such that G? S does not contain H as an induced subgraph. Motivated by previous work about hitting (topological) minors and subgraphs on bounded treewidth graphs, we are interested in determining, for a fixed graph H, the smallest function f_H(t) such that H-IS-Deletion can be solved in time f_H(t) ? n^{?(1)} assuming the Exponential Time Hypothesis (ETH), where t and n denote the treewidth and the number of vertices of the input graph, respectively. We show that f_H(t) = 2^{?(t^{h-2})} for every graph H on h ? 3 vertices, and that f_H(t) = 2^{?(t)} if H is a clique or an independent set. We present a number of lower bounds by generalizing a reduction of Cygan et al. [MFCS 2014] for the subgraph version. In particular, we show that when H deviates slightly from a clique, the function f_H(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then f_H(t) = 2^{?(t^{h-2})}. We also show that f_H(t) = 2^{?(t^{h})} when H = K_{h,h}, and this reduction answers an open question of Mi. Pilipczuk [MFCS 2011] about the function f_{C?}(t) for the subgraph version. Motivated by Cygan et al. [MFCS 2014], we also consider the colorful variant of the problem, where each vertex of G is colored with some color from V(H) and we require to hit only induced copies of H with matching colors. In this case, we determine, under the ETH, the function f_H(t) for every connected graph H on h vertices: if h ? 2 the problem can be solved in polynomial time; if h ? 3, f_H(t) = 2^{?(t)} if H is a clique, and f_H(t) = 2^{?(t^{h-2})} otherwise

    Hitting forbidden induced subgraphs on bounded treewidth graphs

    Full text link
    For a fixed graph HH, the HH-IS-Deletion problem asks, given a graph GG, for the minimum size of a set SV(G)S \subseteq V(G) such that GSG\setminus S does not contain HH as an induced subgraph. Motivated by previous work about hitting (topological) minors and subgraphs on bounded treewidth graphs, we are interested in determining, for a fixed graph HH, the smallest function fH(t)f_H(t) such that HH-IS-Deletion can be solved in time fH(t)nO(1)f_H(t) \cdot n^{O(1)} assuming the Exponential Time Hypothesis (ETH), where tt and nn denote the treewidth and the number of vertices of the input graph, respectively. We show that fH(t)=2O(th2)f_H(t) = 2^{O(t^{h-2})} for every graph HH on h3h \geq 3 vertices, and that fH(t)=2O(t)f_H(t) = 2^{O(t)} if HH is a clique or an independent set. We present a number of lower bounds by generalizing a reduction of Cygan et al. [MFCS 2014] for the subgraph version. In particular, we show that when HH deviates slightly from a clique, the function fH(t)f_H(t) suffers a sharp jump: if HH is obtained from a clique of size hh by removing one edge, then fH(t)=2Θ(th2)f_H(t) = 2^{\Theta(t^{h-2})}. We also show that fH(t)=2Ω(th)f_H(t) = 2^{\Omega(t^{h})} when H=Kh,hH=K_{h,h}, and this reduction answers an open question of Mi. Pilipczuk [MFCS 2011] about the function fC4(t)f_{C_4}(t) for the subgraph version. Motivated by Cygan et al. [MFCS 2014], we also consider the colorful variant of the problem, where each vertex of GG is colored with some color from V(H)V(H) and we require to hit only induced copies of HH with matching colors. In this case, we determine, under the ETH, the function fH(t)f_H(t) for every connected graph HH on hh vertices: if h2h\leq 2 the problem can be solved in polynomial time; if h3h\geq 3, fH(t)=2Θ(t)f_H(t) = 2^{\Theta(t)} if HH is a clique, and fH(t)=2Θ(th2)f_H(t) = 2^{\Theta(t^{h-2})} otherwise.Comment: 24 pages, 3 figure
    corecore