262,833 research outputs found

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    A Method for the Perceptual Optimization of Complex Visualizations

    Get PDF
    A common problem in visualization applications is the display of one surface overlying another. Unfortunately, it is extremely difficult to do this clearly and effectively. Stereoscopic viewing can help, but in order for us to be able to see both surfaces simultaneously, they must be textured, and the top surface must be made partially transparent. There is also abundant evidence that all textures are not equal in helping to reveal surface shape, but there are no general guidelines describing the best set of textures to be used in this way. What makes the problem difficult to perceptually optimize is that there are a great many variables involved. Both foreground and background textures must be specified in terms of their component colors, texture element shapes, distributions, and sizes. Also to be specified is the degree of transparency for the foreground texture components. Here we report on a novel approach to creating perceptually optimal solutions to complex visualization problems and we apply it to the overlapping surface problem as a test case. Our approach is a three-stage process. In the first stage we create a parameterized method for specifying a foreground and background pair of textures. In the second stage a genetic algorithm is applied to a population of texture pairs using subject judgments as a selection criterion. Over many trials effective texture pairs evolve. The third stage involves characterizing and generalizing the examples of effective textures. We detail this process and present some early results

    Slow relaxation due to optimization and restructuring: Solution on a hierarchical lattice

    Full text link
    Motivated by the large strain shear of loose granular materials we introduced a model which consists of consecutive optimization and restructuring steps leading to a self organization of a density field. The extensive connections to other models of statistical phyics are discussed. We investigate our model on a hierarchical lattice which allows an exact asymptotic renormalization treatment. A surprisingly close analogy is observed between the simulation results on the regular and the hierarchical lattices. The dynamics is characterized by the breakdown of ergodicity, by unusual system size effects in the development of the average density as well as by the age distribution, the latter showing multifractal properties.Comment: 11 pages, 7 figures revtex, submitted to PRE see also: cond-mat/020920

    Large-deviation properties of the extended Moran model

    Full text link
    The distributions of the times to the first common ancestor t_mrca is numerically studied for an ecological population model, the extended Moran model. This model has a fixed population size N. The number of descendants is drawn from a beta distribution Beta(alpha, 2-alpha) for various choices of alpha. This includes also the classical Moran model (alpha->0) as well as the uniform distribution (alpha=1). Using a statistical mechanics-based large-deviation approach, the distributions can be studied over an extended range of the support, down to probabilities like 10^{-70}, which allowed us to study the change of the tails of the distribution when varying the value of alpha in [0,2]. We find exponential distributions p(t_mrca)~ delta^{t_mrca} in all cases, with systematically varying values for the base delta. Only for the cases alpha=0 and alpha=1, analytical results are known, i.e., delta=\exp(-2/N^2) and delta=2/3, respectively. We recover these values, confirming the validity of our approach. Finally, we also study the correlations between t_mrca and the number of descendants.Comment: 8 pages, 8 figure

    An Improved Approximate-Bayesian Model-choice Method for Estimating Shared Evolutionary History

    Get PDF
    To understand biological diversification, it is important to account for large-scale processes that affect the evolutionary history of groups of co-distributed populations of organisms. Such events predict temporally clustered divergences times, a pattern that can be estimated using genetic data from co-distributed species. I introduce a new approximate-Bayesian method for comparative phylogeographical model-choice that estimates the temporal distribution of divergences across taxa from multi-locus DNA sequence data. The model is an extension of that implemented in msBayes. By reparameterizing the model, introducing more flexible priors on demographic and divergence-time parameters, and implementing a non-parametric Dirichlet-process prior over divergence models, I improved the robustness, accuracy, and power of the method for estimating shared evolutionary history across taxa. The results demonstrate the improved performance of the new method is due to (1) more appropriate priors on divergence-time and demographic parameters that avoid prohibitively small marginal likelihoods for models with more divergence events, and (2) the Dirichlet-process providing a flexible prior on divergence histories that does not strongly disfavor models with intermediate numbers of divergence events. The new method yields more robust estimates of posterior uncertainty, and thus greatly reduces the tendency to incorrectly estimate models of shared evolutionary history with strong support.Comment: 48 pages, 8 figures, 4 tables, 35 pages of supporting information with 1 supporting table and 33 supporting figure

    Evolution of the most recent common ancestor of a population with no selection

    Full text link
    We consider the evolution of a population of fixed size with no selection. The number of generations GG to reach the first common ancestor evolves in time. This evolution can be described by a simple Markov process which allows one to calculate several characteristics of the time dependence of GG. We also study how GG is correlated to the genetic diversity.Comment: 21 pages, 10 figures, uses RevTex4 and feynmf.sty Corrections : introduction and conclusion rewritten, references adde
    • …
    corecore