1,996 research outputs found

    Content-Based Image Retrieval (CBIR) in Big Histological Image Databases

    Get PDF
    Background: Automatic analysis of Histopathological Images (HIs) demands image processing and Computational Intelligence (CI) techniques. Both Computer-Aided Diagnosis (CAD) and Content-Based Image-Retrieval (CBIR) systems assist diagnosis, disease discovery, and biological decision-making. Classical tests comprise screening examinations and biopsy. Histopathology slides offer more ample diagnosis data. However, manual examination of microscopic images is labor-intensive and time-consuming and may depend on a subjective assessment by the pathologist, which can be a challenge. Methods: This work discusses a CBIR framework to extract and handle histological data, histological metadata, integrated patient records, specimen metadata, attributes, and similar stored files. This work presents a scalable image-retrieval framework for intelligent HI analysis with real-time retrieval. The potential applications of this framework include image-guided diagnosis, decision support, healthcare education, and efficient biological data management. Results: The considerable amount of biological-related data prompted the development and deployment of large-scale databases and data-driven techniques to bridge the semantic gap between images and diagnostic information. The new cloud computing technologies and the concept of cyber-physical systems have improved the CBIR architectures considerably. The proposed scalable architecture relies on CI and validates performance on several HIs acquired from microscopic tissues. Extensive assessments show improvements in terms of disease classification and retrieval tests. Conclusion: This research effort significant contributions are twofold. 1) Defining a  comprehensive and large-scale CBIR framework to analyze HIs with high-dimensional features and CI methods successfully. 2) high-performance updating and optimization strategies improve the querying while better handling new training samples than traditional methods

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Histology Image Retrieval in Optimized Multifeature Spaces

    Get PDF

    SHIRAZ: an automated histology image annotation system for zebrafish phenomics

    Get PDF
    Histological characterization is used in clinical and research contexts as a highly sensitive method for detecting the morphological features of disease and abnormal gene function. Histology has recently been accepted as a phenotyping method for the forthcoming Zebrafish Phenome Project, a large-scale community effort to characterize the morphological, physiological, and behavioral phenotypes resulting from the mutations in all known genes in the zebrafish genome. In support of this project, we present a novel content-based image retrieval system for the automated annotation of images containing histological abnormalities in the developing eye of the larval zebrafish
    corecore