185 research outputs found

    Partial discharge denoising for power cables

    Get PDF
    Partial discharge (PD) diagnostics is considered a major and effective tool for the monitoring of insulating conditions of power cables. As such, a large amount of off-line or online PD measurements have been deployed in power cables during the past decades. However, challenges still exist in PD diagnostics for power cables. Noise is one of the challenges involved in PD measurement. This thesis develops new algorithms based on the characteristics of both PD signals and noise to improve the effectiveness of wavelet-based PD denoising. In the meantime, it presents new findings in the application of empirical mode decomposition (EMD) in PD denoising. Wavelet-based technique has received high attention in the area of PD denoising, it still faces challenges, however, in wavelet selection, decomposition scale determination, and noise estimation. It is therefore the first area of interest in this thesis to improve the effectiveness of existing wavelet-based technique in PD detection by incorporating proposed algorithms. These new algorithms were developed based on the difference of entropy between transformed PD signals and noise, and the sparsity of transformed PD signals corrupted by noise. One concern commonly expressed by critics of wavelet-based technique is a pre-defined wavelet is applied in wavelet-based technique. EMD is an algorithm that can decompose a signal based on the signal itself. Thus, the second area of interest in this thesis is to further investigate the application of EMD in PD denoising; a technique that does not require the selection of a pre-defined signal to represent the "unknown" signal of interest. A new method for relative mode selection (RMS) was proposed based on the entropy of each intrinsic mode function (IMF). Although this new method cannot outperform the existing ones, it reveals that RMS is not as important as claimed in the application of EMD in signal denoising. Also, PD signals, especially those with lower magnitudes, can receive serious distortion through EMD-based denoising. Finally, comparisons between wavelet-based and EMD-based denoising were implemented in the following aspects, i.e., executing time, distortion, effectiveness, adaptivity and robustness. Results unveil that improved wavelet-based technique is more preferable as it can present better performance in PD denoising.Partial discharge (PD) diagnostics is considered a major and effective tool for the monitoring of insulating conditions of power cables. As such, a large amount of off-line or online PD measurements have been deployed in power cables during the past decades. However, challenges still exist in PD diagnostics for power cables. Noise is one of the challenges involved in PD measurement. This thesis develops new algorithms based on the characteristics of both PD signals and noise to improve the effectiveness of wavelet-based PD denoising. In the meantime, it presents new findings in the application of empirical mode decomposition (EMD) in PD denoising. Wavelet-based technique has received high attention in the area of PD denoising, it still faces challenges, however, in wavelet selection, decomposition scale determination, and noise estimation. It is therefore the first area of interest in this thesis to improve the effectiveness of existing wavelet-based technique in PD detection by incorporating proposed algorithms. These new algorithms were developed based on the difference of entropy between transformed PD signals and noise, and the sparsity of transformed PD signals corrupted by noise. One concern commonly expressed by critics of wavelet-based technique is a pre-defined wavelet is applied in wavelet-based technique. EMD is an algorithm that can decompose a signal based on the signal itself. Thus, the second area of interest in this thesis is to further investigate the application of EMD in PD denoising; a technique that does not require the selection of a pre-defined signal to represent the "unknown" signal of interest. A new method for relative mode selection (RMS) was proposed based on the entropy of each intrinsic mode function (IMF). Although this new method cannot outperform the existing ones, it reveals that RMS is not as important as claimed in the application of EMD in signal denoising. Also, PD signals, especially those with lower magnitudes, can receive serious distortion through EMD-based denoising. Finally, comparisons between wavelet-based and EMD-based denoising were implemented in the following aspects, i.e., executing time, distortion, effectiveness, adaptivity and robustness. Results unveil that improved wavelet-based technique is more preferable as it can present better performance in PD denoising

    Examination on the Denoising Methods for Electrical and Acoustic Emission Partial Discharge Signals in Oil

    Get PDF
    Partial discharge (PD) measurements either through electrical or acoustic emission approaches can be subjected to noises that arise from different sources. In this study, the examination on the denoising methods for electrical and acoustic emission PD signal is carried out. The PD was produced through needle-plane electrodes configuration. Once the voltage reached to 30 kV, the electrical and acoustic emission PD signals were recorded and additive white Gaussian noise (AWGN) was introduced. These signals were then denoised using moving average (MA), finite impulse response (FIR) low/high-pass filters, and discrete wavelet transform (DWT) methods. The denoising methods were evaluated through ratio to noise level (RNL), normalized root mean square error (NRMSE) and normalized correlation coefficient (NCC). In addition, the computation times for all denoising methods were also recorded. Based on RNL, NRMSE and NCC indexes, the performances of the denoising methods were analyzed through normalization based on the coefficient of variation (). Based on the current study, it is found that DWT performs well to denoise the electrical PD signal based on the RNL and NRMSE index while MA has a good denoising NCC and computation time index for acoustic emission PD signal

    A Wavelet Threshold Function for Treatment of Partial Discharge Measurements

    Get PDF
    Based on the wavelet transform filtering theory, the chapter will describe the elaboration of a wavelet threshold function intended for the denoising of the partial discharge phenomenon measurements. This new function, conveniently named Fleming threshold, is based on the logistic function, which is well known for its utility in several important areas. In the development is shown some variations in the application of the Fleming function, in an attempt to identify the decomposition levels where the thresholding process must be more stringent and those where it can be more lenient, which increases its effectiveness in the removal of noisy coefficients. The proposed function and its variants demonstrate excellent results compared to other wavelet thresholding methods already described in the literature, including the famous Hard and Soft functions

    A New Signal Processing Approach to Study Action Potential Content in Sympathetic Neural Signals

    Get PDF
    Sympathetic nerve activity plays an essential role in the normal regulation of blood pressure in humans and in the etiology and progression of many chronic diseases. Sympathetic nerve recordings associated with blood pressure regulation can be recorded directly using microneurography. A general characteristic of this signal is spontaneous burst activity of spikes (action potentials) separated by silent periods against a background of considerable gaussian noise. During measurement with electrodes, the raw muscle sympathetic nerve activity (MSNA) signal is amplified, band-pass filtered, rectified and integrated. This integration process removes important information regarding action potential content and their discharge properties. The first objective of this thesis was to propose a new method for detecting action potentials from the raw MSNA signal to enable investigation of post-ganglionic neural discharge properties. The new method is based on the design of a mother wavelet that is matched to an actual mean action potential template extracted from a raw MSNA signal and applying it to the raw MSNA signal using a continues wavelet transform (CWT) for spike detection. The performance of the proposed method versus two previous wavelet-based approaches was evaluated using 1) MSNA recorded from seven healthy participants and, 2) simulated MSNA. The results show that the new matched wavelet performs better than the previous wavelet-based methods that use a non-matched wavelet in detecting action potentials in the MSNA signal. The second objective of this thesis was to employ the proposed action potential detection and classification technique to study the relationship between the recruitment of sympathetic action potentials (i.e., neurons) and the size of integrated sympathetic bursts in human MSNA signal. While in other neural systems (e.g. the skeletal motor system) there is a well understood pattern of neural recruitment during activation, our understanding of how sympathetic neurons are coordinated during baseline and baroreceptor unloading are very limited. We demonstrate that there exists a hierarchical pattern of recruitment of additional faster conducting neurons of larger amplitude as the sympathetic bursts become stronger. This information has important implications for how blood pressure is controlled, and the malleability of sympathetic activation in health and disease

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Underground distribution cable incipient fault diagnosis system

    Get PDF
    This dissertation presents a methodology for an efficient, non-destructive, and online incipient fault diagnosis system (IFDS) to detect underground cable incipient faults before they become catastrophic. The system provides vital information to help the operator with the decision-making process regarding the condition assessment of the underground cable. It incorporates advanced digital signal processing and pattern recognition methods to classify recorded data into designated classes. Additionally, the IFDS utilizes novel detection methodologies to detect when the cable is near failure. The classification functionality is achieved through employing an ensemble of rule-based and supervised classifiers. The Support Vector Machines, designed and used as a supervised classifier, was found to perform superior. In addition to the normalized energy features computed from wavelet packet analysis, two new features, namely Horizontal Severity Index, and Vertical Severity Index are defined and used in the classification problem. The detection functionality of the IFDS is achieved through incorporating a temporal severity measure and a detection method. The novel severity measure is based on the temporal analysis of arrival times of incipient abnormalities, which gives rise to a numeric index called the Global Severity Index (GSI). This index portrays the progressive degradation path of underground cable as catastrophic failure time approaches. The detection approach utilizes the numerical modeling capabilities of SOM as well as statistical change detection techniques. The natural logarithm of the chronologically ordered minimum modeling errors, computed from exposing feature vectors to a trained SOM, is used as the detection index. Three modified change detection algorithms, namely Cumulative Sum, Exponentially Weighted Moving Averages, and Generalized Likelihood Ratio, are introduced and applied to this application. These algorithms determine the change point or near failure time of cable from the instantaneous values of the detection index. Performance studies using field recorded data were conducted at three warning levels to assess the capability of the IFDS in predicting the faults that actually occurred in the monitored underground cable. The IFDS presents a high classification rate and satisfactory detection capability at each warning level. Specifically, it demonstrates that at least one detection technique successfully provides an early warning that a fault is imminent

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    A Diagnosis Feature Space for Condition Monitoring and Fault Diagnosis of Ball Bearings

    Get PDF
    The problem of fault diagnosis and condition monitoring of ball bearings is a multidisciplinary subject. It involves research subjects from diverse disciplines of mechanical engineering, electrical engineering and in particular signal processing. In the first step, one should identify the correct method of investigation. The methods of investigation for condition monitoring of ball bearings include acoustic emission measurements, temperature monitoring, electrical current monitoring, debris analysis and vibration signal analysis. In this thesis the vibration signal analysis is employed. Once the method of analysis is selected, then features sensitive to faults should be calculated from the signal. While some of the features may be useful for condition monitoring, some of the calculated features might be extra and may not be helpful. Therefore, a feature reduction module should be employed. Initially, six features are selected as a candidate for the diagnosis feature space. After analyzing the trend of the features, it was concluded that three of the features are not appropriate for fault diagnosis. In this thesis, two problem is investigated. First the problem of identifying the effects of the fault size on the vibration signal is investigated. Also the performance of the feature space is tested in distinguishing the healthy ball bearings from the defective vibration signals
    • …
    corecore