102 research outputs found

    Histogram-Aware Sorting for Enhanced Word-Aligned Compression in Bitmap Indexes

    Get PDF
    Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. These techniques are sensitive to the order of the rows: a simple lexicographical sort can divide the index size by 9 and make indexes several times faster. We investigate reordering heuristics based on computed attribute-value histograms. Simply permuting the columns of the table based on these histograms can increase the sorting efficiency by 40%.Comment: To appear in proceedings of DOLAP 200

    Sorting improves word-aligned bitmap indexes

    Get PDF
    Bitmap indexes must be compressed to reduce input/output costs and minimize CPU usage. To accelerate logical operations (AND, OR, XOR) over bitmaps, we use techniques based on run-length encoding (RLE), such as Word-Aligned Hybrid (WAH) compression. These techniques are sensitive to the order of the rows: a simple lexicographical sort can divide the index size by 9 and make indexes several times faster. We investigate row-reordering heuristics. Simply permuting the columns of the table can increase the sorting efficiency by 40%. Secondary contributions include efficient algorithms to construct and aggregate bitmaps. The effect of word length is also reviewed by constructing 16-bit, 32-bit and 64-bit indexes. Using 64-bit CPUs, we find that 64-bit indexes are slightly faster than 32-bit indexes despite being nearly twice as large

    HW/SW-database-codesign for compressed bitmap index processing

    Get PDF
    Compressed bitmap indices are heavily used in scientific and commercial database systems because they largely improve query performance for various workloads. Early research focused on finding tailor-made index compression schemes that are amenable for modern processors. Improving performance further typically comes at the expense of a lower compression rate, which is in many applications not acceptable because of memory limitations. Alternatively, tailor-made hardware allows to achieve a performance that can only hardly be reached with software running on general-purpose CPUs. In this paper, we will show how to create a custom instruction set framework for compressed bitmap processing that is generic enough to implement most of the major compressed bitmap indices. For evaluation, we implemented WAH, PLWAH, and COMPAX operations using our framework and compared the resulting implementation to multiple state-of-the-art processors. We show that the custom-made bitmap processor achieves speedups of up to one order of magnitude by also using two orders of magnitude less energy compared to a modern energy-efficient Intel processor. Finally, we discuss how to embed our processor with database-specific instruction sets into database system environments

    Performance evaluation of word-aligned compression methods for bitmap indices

    Get PDF
    Bitmap indices are a widely used scheme for large read-only repositories in data warehouses and scientific databases. This binary representation allows the use of bit-wise operations for fast query processing and is typically compressed using run-length encoding techniques. Most bitmap compression techniques are aligned using a fixed encoding length (32 or 64 bits) to avoid explicit decompression during query time. They have been proposed to extend or enhance word-aligned hybrid (WAH) compression. This paper presents a comparative study of four bitmap compression techniques: WAH, PLWAH, CONCISE, and EWAH. Experiments are targeted to identify the conditions under which each method should be applied and quantify the overhead incurred during query processing. Performance in terms of compression ratio and query time is evaluated over synthetic-generated bitmap indices, and results are validated over bitmap indices generated from real data sets. Different query optimizations are explored, query time estimation formulas are defined, and the conditions under which one method should be preferred over another are formalized

    Concepts and Techniques for Flexible and Effective Music Data Management

    Get PDF

    Supporting Efficient Database Processing in Mapreduce

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Query Workload-Aware Index Structures for Range Searches in 1D, 2D, and High-Dimensional Spaces

    Get PDF
    abstract: Most current database management systems are optimized for single query execution. Yet, often, queries come as part of a query workload. Therefore, there is a need for index structures that can take into consideration existence of multiple queries in a query workload and efficiently produce accurate results for the entire query workload. These index structures should be scalable to handle large amounts of data as well as large query workloads. The main objective of this dissertation is to create and design scalable index structures that are optimized for range query workloads. Range queries are an important type of queries with wide-ranging applications. There are no existing index structures that are optimized for efficient execution of range query workloads. There are also unique challenges that need to be addressed for range queries in 1D, 2D, and high-dimensional spaces. In this work, I introduce novel cost models, index selection algorithms, and storage mechanisms that can tackle these challenges and efficiently process a given range query workload in 1D, 2D, and high-dimensional spaces. In particular, I introduce the index structures, HCS (for 1D spaces), cSHB (for 2D spaces), and PSLSH (for high-dimensional spaces) that are designed specifically to efficiently handle range query workload and the unique challenges arising from their respective spaces. I experimentally show the effectiveness of the above proposed index structures by comparing with state-of-the-art techniques.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Transactional and analytical data management on persistent memory

    Get PDF
    Die zunehmende Anzahl von Smart-Geräten und Sensoren, aber auch die sozialen Medien lassen das Datenvolumen und damit die geforderte Verarbeitungsgeschwindigkeit stetig wachsen. Gleichzeitig müssen viele Anwendungen Daten persistent speichern oder sogar strenge Transaktionsgarantien einhalten. Die neuartige Speichertechnologie Persistent Memory (PMem) mit ihren einzigartigen Eigenschaften scheint ein natürlicher Anwärter zu sein, um diesen Anforderungen effizient nachzukommen. Sie ist im Vergleich zu DRAM skalierbarer, günstiger und dauerhaft. Im Gegensatz zu Disks ist sie deutlich schneller und direkt adressierbar. Daher wird in dieser Dissertation der gezielte Einsatz von PMem untersucht, um den Anforderungen moderner Anwendung gerecht zu werden. Nach der Darlegung der grundlegenden Arbeitsweise von und mit PMem, konzentrieren wir uns primär auf drei Aspekte der Datenverwaltung. Zunächst zerlegen wir mehrere persistente Daten- und Indexstrukturen in ihre zugrundeliegenden Entwurfsprimitive, um Abwägungen für verschiedene Zugriffsmuster aufzuzeigen. So können wir ihre besten Anwendungsfälle und Schwachstellen, aber auch allgemeine Erkenntnisse über das Entwerfen von PMem-basierten Datenstrukturen ermitteln. Zweitens schlagen wir zwei Speicherlayouts vor, die auf analytische Arbeitslasten abzielen und eine effiziente Abfrageausführung auf beliebigen Attributen ermöglichen. Während der erste Ansatz eine verknüpfte Liste von mehrdimensionalen gruppierten Blöcken verwendet, handelt es sich beim zweiten Ansatz um einen mehrdimensionalen Index, der Knoten im DRAM zwischenspeichert. Drittens zeigen wir unter Verwendung der bisherigen Datenstrukturen und Erkenntnisse, wie Datenstrom- und Ereignisverarbeitungssysteme mit transaktionaler Zustandsverwaltung verbessert werden können. Dabei schlagen wir ein neuartiges Transactional Stream Processing (TSP) Modell mit geeigneten Konsistenz- und Nebenläufigkeitsprotokollen vor, die an PMem angepasst sind. Zusammen sollen die diskutierten Aspekte eine Grundlage für die Entwicklung noch ausgereifterer PMem-fähiger Systeme bilden. Gleichzeitig zeigen sie, wie Datenverwaltungsaufgaben PMem ausnutzen können, indem sie neue Anwendungsgebiete erschließen, die Leistung, Skalierbarkeit und Wiederherstellungsgarantien verbessern, die Codekomplexität vereinfachen sowie die ökonomischen und ökologischen Kosten reduzieren.The increasing number of smart devices and sensors, but also social media are causing the volume of data and thus the demanded processing speed to grow steadily. At the same time, many applications need to store data persistently or even comply with strict transactional guarantees. The novel storage technology Persistent Memory (PMem), with its unique properties, seems to be a natural candidate to meet these requirements efficiently. Compared to DRAM, it is more scalable, less expensive, and durable. In contrast to disks, it is significantly faster and directly addressable. Therefore, this dissertation investigates the deliberate employment of PMem to fit the needs of modern applications. After presenting the fundamental work of and with PMem, we focus primarily on three aspects of data management. First, we disassemble several persistent data and index structures into their underlying design primitives to reveal the trade-offs for various access patterns. It allows us to identify their best use cases and vulnerabilities but also to gain general insights into the design of PMem-based data structures. Second, we propose two storage layouts that target analytical workloads and enable an efficient query execution on arbitrary attributes. While the first approach employs a linked list of multi-dimensional clustered blocks that potentially span several storage layers, the second approach is a multi-dimensional index that caches nodes in DRAM. Third, we show how to improve stream and event processing systems involving transactional state management using the preceding data structures and insights. In this context, we propose a novel Transactional Stream Processing (TSP) model with appropriate consistency and concurrency protocols adapted to PMem. Together, the discussed aspects are intended to provide a foundation for developing even more sophisticated PMemenabled systems. At the same time, they show how data management tasks can take advantage of PMem by opening up new application domains, improving performance, scalability, and recovery guarantees, simplifying code complexity, plus reducing economic and environmental costs

    Diamond Dicing

    Get PDF
    In OLAP, analysts often select an interesting sample of the data. For example, an analyst might focus on products bringing revenues of at least 100 000 dollars, or on shops having sales greater than 400 000 dollars. However, current systems do not allow the application of both of these thresholds simultaneously, selecting products and shops satisfying both thresholds. For such purposes, we introduce the diamond cube operator, filling a gap among existing data warehouse operations. Because of the interaction between dimensions the computation of diamond cubes is challenging. We compare and test various algorithms on large data sets of more than 100 million facts. We find that while it is possible to implement diamonds in SQL, it is inefficient. Indeed, our custom implementation can be a hundred times faster than popular database engines (including a row-store and a column-store).Comment: 29 page

    Low-latency, query-driven analytics over voluminous multidimensional, spatiotemporal datasets

    Get PDF
    2017 Summer.Includes bibliographical references.Ubiquitous data collection from sources such as remote sensing equipment, networked observational devices, location-based services, and sales tracking has led to the accumulation of voluminous datasets; IDC projects that by 2020 we will generate 40 zettabytes of data per year, while Gartner and ABI estimate 20-35 billion new devices will be connected to the Internet in the same time frame. The storage and processing requirements of these datasets far exceed the capabilities of modern computing hardware, which has led to the development of distributed storage frameworks that can scale out by assimilating more computing resources as necessary. While challenging in its own right, storing and managing voluminous datasets is only the precursor to a broader field of study: extracting knowledge, insights, and relationships from the underlying datasets. The basic building block of this knowledge discovery process is analytic queries, encompassing both query instrumentation and evaluation. This dissertation is centered around query-driven exploratory and predictive analytics over voluminous, multidimensional datasets. Both of these types of analysis represent a higher-level abstraction over classical query models; rather than indexing every discrete value for subsequent retrieval, our framework autonomously learns the relationships and interactions between dimensions in the dataset (including time series and geospatial aspects), and makes the information readily available to users. This functionality includes statistical synopses, correlation analysis, hypothesis testing, probabilistic structures, and predictive models that not only enable the discovery of nuanced relationships between dimensions, but also allow future events and trends to be predicted. This requires specialized data structures and partitioning algorithms, along with adaptive reductions in the search space and management of the inherent trade-off between timeliness and accuracy. The algorithms presented in this dissertation were evaluated empirically on real-world geospatial time-series datasets in a production environment, and are broadly applicable across other storage frameworks
    corecore