2,794 research outputs found

    Pandora: Description of a Painting Database for Art Movement Recognition with Baselines and Perspectives

    Full text link
    To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.To facilitate computer analysis of visual art, in the form of paintings, we introduce Pandora (Paintings Dataset for Recognizing the Art movement) database, a collection of digitized paintings labelled with respect to the artistic movement. Noting that the set of databases available as benchmarks for evaluation is highly reduced and most existing ones are limited in variability and number of images, we propose a novel large scale dataset of digital paintings. The database consists of more than 7700 images from 12 art movements. Each genre is illustrated by a number of images varying from 250 to nearly 1000. We investigate how local and global features and classification systems are able to recognize the art movement. Our experimental results suggest that accurate recognition is achievable by a combination of various categories.Comment: 11 pages, 1 figure, 6 table

    SIGNIFICANCE OF DIMENSIONALITY REDUCTION IN IMAGE PROCESSING

    Get PDF
    The aim of this paper is to present a comparative study of two linear dimension reduction methods namely PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis). The main idea of PCA is to transform the high dimensional input space onto the feature space where the maximal variance is displayed. The feature selection in traditional LDA is obtained by maximizing the difference between classes and minimizing the distance within classes. PCA finds the axes with maximum variance for the whole data set where LDA tries to find the axes for best class seperability. The neural network is trained about the reduced feature set (using PCA or LDA) of images in the database for fast searching of images from the database using back propagation algorithm. The proposed method is experimented over a general image database using Matlab. The performance of these systems has been evaluated by Precision and Recall measures. Experimental results show that PCA gives the better performance in terms of higher precision and recall values with lesser computational complexity than LDA

    Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination

    Get PDF
    We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure

    Content Based Image Retrieval based on Shape with Texture Features

    Get PDF
    In areas of state, domain and hospitals, massive collections of digital pictures are being created. These image collections are the merchandise of digitizing existing collections of analogue images, diagrams, drawings, paintings, and prints. Retrieving the specified similar image from a large dataset is very difficult. A new image retrieval system is obtainable in this paper, for feature extraction HSV color space and wavelet transform approach are used. Initially constructed one dimension feature vector and represented the color feature it is made by that the color space is quantified in non-equal intervals. Then with the help of wavelet texture feature extraction is obtained. At last by using of wavelet transform combined the color feature and texture feature method. The illustration features are susceptible for different type images in image retrieval experiments. The color features opted to the rich color image with simple variety. Texture feature opted to the complex images. At the same time, experiments reveal that HSV texture feature based on wavelet transform has better effective performance and stability than the RGB. The same work is performed for the RGB color space and their results are compared with the proposed system. The result shows that CBIR with the HSV color space is retrieves image with more accuracy and reduced retrieval time. Keywords--Content Based Image Retrieval, HSV, RG

    The Parallel Distributed Image Search Engine (ParaDISE)

    Get PDF
    Image retrieval is a complex task that differs according to the context and the user requirements in any specific field, for example in a medical environment. Search by text is often not possible or optimal and retrieval by the visual content does not always succeed in modelling high-level concepts that a user is looking for. Modern image retrieval techniques consists of multiple steps and aim to retrieve information from large–scale datasets and not only based on global image appearance but local features and if possible in a connection between visual features and text or semantics. This paper presents the Parallel Distributed Image Search Engine (ParaDISE), an image retrieval system that combines visual search with text–based retrieval and that is available as open source and free of charge. The main design concepts of ParaDISE are flexibility, expandability, scalability and interoperability. These concepts constitute the system, able to be used both in real–world applications and as an image retrieval research platform. Apart from the architecture and the implementation of the system, two use cases are described, an application of ParaDISE in retrieval of images from the medical literature and a visual feature evaluation for medical image retrieval. Future steps include the creation of an open source community that will contribute and expand this platform based on the existing parts

    Wavelet based similarity measurement algorithm for seafloor morphology

    Get PDF
    Thesis (S.M. in Naval Architecture and Marine Engineering and S.M. in Mechanical Engineering)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (leaves 71-73).The recent expansion of systematic seafloor exploration programs such as geophysical research, seafloor mapping, search and survey, resource assessment and other scientific, commercial and military applications has created a need for rapid and robust methods of processing seafloor imagery. Given the existence of a large library of seafloor images, a fast automated image classifier algorithm is needed to determine changes in seabed morphology over time. The focus of this work is the development of a robust Similarity Measurement (SM) algorithm to address the above problem. Our work uses a side-scan sonar image library for experimentation and testing. Variations of an underwater vehicle's height above the sea floor and of its pitch and roll angles cause distortion in the data obtained, such that transformations to align the data should include rotation, translation, anisotropic scaling and skew. In order to deal with these problems, we propose to use the Wavelet transform for similarity detection. Wavelets have been widely used during the last three decades in image processing. Since the Wavelet transform allows a multi-resolution decomposition, it is easier to identify the similarities between two images by examining the energy distribution at each decomposition level.(cont.) The energy distribution in the frequency domain at the output of the high pass and low pass filter banks identifies the texture discrimination. Our approach uses a statistical framework, involving fitting the Wavelet coefficients into a generalized Gaussian density distribution. The next step involves use of the Kullback-Leibner entropy metric to measure the distance between Wavelet coefficient distributions. To select the top N most likely matching images, the database images are ranked based on the minimum Kullback-Leibner distance. The statistical approach is effective in eliminating rotation, mis-registration and skew problems by working in the Wavelet domain. It's recommended that further work focuses on choosing the best Wavelet packet to increase the robustness of the algorithm developed in this thesis.by Ilkay Darilmaz.S.M.in Naval Architecture and Marine Engineering and S.M.in Mechanical Engineerin
    • …
    corecore