61 research outputs found

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than ndn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Primitive Zonotopes

    Full text link
    We introduce and study a family of polytopes which can be seen as a generalization of the permutahedron of type BdB_d. We highlight connections with the largest possible diameter of the convex hull of a set of points in dimension dd whose coordinates are integers between 00 and kk, and with the computational complexity of multicriteria matroid optimization.Comment: The title was slightly modified, and the determination of the computational complexity of multicriteria matroid optimization was adde

    Posets arising as 1-skeleta of simple polytopes, the nonrevisiting path conjecture, and poset topology

    Full text link
    Given any polytope PP and any generic linear functional c{\bf c} , one obtains a directed graph G(P,c)G(P,{\bf c}) by taking the 1-skeleton of PP and orienting each edge e(u,v)e(u,v) from uu to vv for c(u)<c(v){\bf c} (u) < {\bf c} ( v). This paper raises the question of finding sufficient conditions on a polytope PP and generic cost vector c{\bf c} so that the graph G(P,c)G(P, {\bf c} ) will not have any directed paths which revisit any face of PP after departing from that face. This is in a sense equivalent to the question of finding conditions on PP and c{\bf c} under which the simplex method for linear programming will be efficient under all choices of pivot rules. Conditions on PP and c{\bf c} are given which provably yield a corollary of the desired face nonrevisiting property and which are conjectured to give the desired property itself. This conjecture is proven for 3-polytopes and for spindles having the two distinguished vertices as source and sink; this shows that known counterexamples to the Hirsch Conjecture will not provide counterexamples to this conjecture. A part of the proposed set of conditions is that G(P,c)G(P, {\bf c} ) be the Hasse diagram of a partially ordered set, which is equivalent to requiring non revisiting of 1-dimensional faces. This opens the door to the usage of poset-theoretic techniques. This work also leads to a result for simple polytopes in which G(P,c)G(P, {\bf c}) is the Hasse diagram of a lattice L that the order complex of each open interval in L is homotopy equivalent to a ball or a sphere of some dimension. Applications are given to the weak Bruhat order, the Tamari lattice, and more generally to the Cambrian lattices, using realizations of the Hasse diagrams of these posets as 1-skeleta of permutahedra, associahedra, and generalized associahedra.Comment: new results for 3-polytopes and spindles added; exposition substantially improved throughou

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    On the Shadow Simplex Method for Curved Polyhedra

    Get PDF
    We study the simplex method over polyhedra satisfying certain “discrete curvature” lower bounds, which enforce that the boundary always meets vertices at sharp angles. Motivated by linear programs with totally unimodular constraint matrices, recent results of Bonifas et al (SOCG 2012), Brunsch and Röglin (ICALP 2013), and Eisenbrand and Vempala (2014) have improved our understanding of such polyhedra. We develop a new type of dual analysis of the shadow simplex method which provides a clean and powerful tool for improving all previously mentioned results. Our methods are inspired by the recent work of Bonifas and the first named author [4], who analyzed a remarkably similar process as part of an algorithm for the Closest Vector Problem with Preprocessing. For our first result, we obtain a constructive diameter bound of O( n2 ln n ) for n-dimensional polyhedra with curvature parameter 2 [0, 1]. For the class of polyhedra arising from totally unimodular constraint matrices, this implies a bound of O(n3 ln n). For linear optimization, given an initial feasible vertex, we show that an optimal vertex can be found using an expected O( n3 ln n ) simplex pivots, each requiring O(mn) time to compute. An initial feasible solutioncan be found using O(mn3 ln n ) pivot steps

    On the Shadow Simplex Method for Curved Polyhedra

    Get PDF

    On the Length of Monotone Paths in Polyhedra

    Full text link
    Motivated by the problem of bounding the number of iterations of the Simplex algorithm we investigate the possible lengths of monotone paths followed by the Simplex method inside the oriented graphs of polyhedra (oriented by the objective function). We consider both the shortest and the longest monotone paths and estimate the monotone diameter and height of polyhedra. Our analysis applies to transportation polytopes, matroid polytopes, matching polytopes, shortest-path polytopes, and the TSP, among others. We begin by showing that combinatorial cubes have monotone and Bland pivot height bounded by their dimension and that in fact all monotone paths of zonotopes are no larger than the number of edge directions of the zonotope. We later use this to show that several polytopes have polynomial-size pivot height, for all pivot rules. In contrast, we show that many well-known combinatorial polytopes have exponentially-long monotone paths. Surprisingly, for some famous pivot rules, e.g., greatest improvement and steepest edge, these same polytopes have polynomial-size simplex paths.Comment: 24 pages, 8 figure

    Many projectively unique polytopes

    Full text link
    We construct an infinite family of 4-polytopes whose realization spaces have dimension smaller or equal to 96. This in particular settles a problem going back to Legendre and Steinitz: whether and how the dimension of the realization space of a polytope is determined/bounded by its f-vector. From this, we derive an infinite family of combinatorially distinct 69-dimensional polytopes whose realization is unique up to projective transformation. This answers a problem posed by Perles and Shephard in the sixties. Moreover, our methods naturally lead to several interesting classes of projectively unique polytopes, among them projectively unique polytopes inscribed to the sphere. The proofs rely on a novel construction technique for polytopes based on solving Cauchy problems for discrete conjugate nets in S^d, a new Alexandrov--van Heijenoort Theorem for manifolds with boundary and a generalization of Lawrence's extension technique for point configurations.Comment: 44 pages, 18 figures; to appear in Invent. mat
    corecore