93 research outputs found

    Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering.

    Get PDF
    Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system

    Bio-Inspired Techniques in a Fully Digital Approach for Lifelong Learning

    Get PDF
    open3noLifelong learning has deeply underpinned the resilience of biological organisms respect to a constantly changing environment. This flexibility has allowed the evolution of parallel-distributed systems able to merge past information with new stimulus for accurate and efficient brain-computation. Nowadays, there is a strong attempt to reproduce such intelligent systems in standard artificial neural networks (ANNs). However, despite some great results in specific tasks, ANNs still appear too rigid and static in real life respect to the biological systems. Thus, it is necessary to define a new neural paradigm capable of merging the lifelong resilience of biological organisms with the great accuracy of ANNs. Here, we present a digital implementation of a novel mixed supervised-unsupervised neural network capable of performing lifelong learning. The network uses a set of convolutional filters to extract features from the input images of the MNIST and the Fashion-MNIST training datasets. This information defines an original combination of responses of both trained classes and non-trained classes by transfer learning. The responses are then used in the subsequent unsupervised learning based on spike-timing dependent plasticity (STDP). This procedure allows the clustering of non-trained information thanks to bio-inspired algorithms such as neuronal redundancy and spike-frequency adaptation. We demonstrate the implementation of the neural network in a fully digital environment, such as the Xilinx Zynq-7000 System on Chip (SoC). We illustrate a user-friendly interface to test the network by choosing the number and the type of the non-trained classes, or drawing a custom pattern on a tablet. Finally, we propose a comparison of this work with networks based on memristive synaptic devices capable of continual learning, highlighting the main differences and capabilities respect to a fully digital approach.openBianchi S.; MUĂ‘OZ MARTĂŤN IRENE; Ielmini D.Bianchi, S.; MUĂ‘OZ MARTĂŤN, Irene; Ielmini, D

    Neuromorphic Computing Applications in Robotics

    Get PDF
    Deep learning achieves remarkable success through training using massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer from the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationships between events and objects. This learning paradigm is referred to as associative learning. The successful implementation of associative learning imitates self-learning schemes analogous to animals which resolve the challenges of deep learning. Current state-of-the-art implementations of associative memory are limited to simulations with small-scale and offline paradigms. Thus, this work implements associative memory with an Unmanned Ground Vehicle (UGV) and neuromorphic hardware, specifically Intel’s Loihi, for an online learning scenario. This system emulates the classic associative learning in rats using the UGV in place of the rats. In specific, it successfully reproduces the fear conditioning with no pretraining procedure or labeled datasets. The UGV is rendered capable of autonomously learning the cause-and-effect relationship of the light stimulus and vibration stimulus and exhibiting a movement response to demonstrate the memorization. Hebbian learning dynamics are used to update the synaptic weights during the associative learning process. The Intel Loihi chip is integrated with this online learning system for processing visual signals with a specialized neural assembly. While processing, the Loihi’s average power usages for computing logic and memory are 30 mW and 29 mW, respectively

    Plasticity and Adaptation in Neuromorphic Biohybrid Systems

    Get PDF
    Neuromorphic systems take inspiration from the principles of biological information processing to form hardware platforms that enable the large-scale implementation of neural networks. The recent years have seen both advances in the theoretical aspects of spiking neural networks for their use in classification and control tasks and a progress in electrophysiological methods that is pushing the frontiers of intelligent neural interfacing and signal processing technologies. At the forefront of these new technologies, artificial and biological neural networks are tightly coupled, offering a novel \u201cbiohybrid\u201d experimental framework for engineers and neurophysiologists. Indeed, biohybrid systems can constitute a new class of neuroprostheses opening important perspectives in the treatment of neurological disorders. Moreover, the use of biologically plausible learning rules allows forming an overall fault-tolerant system of co-developing subsystems. To identify opportunities and challenges in neuromorphic biohybrid systems, we discuss the field from the perspectives of neurobiology, computational neuroscience, and neuromorphic engineering. \ua9 2020 The Author(s
    • …
    corecore