70 research outputs found

    Patch-based segmentation with spatial context for medical image analysis

    Get PDF
    Accurate segmentations in medical imaging form a crucial role in many applications from pa- tient diagnosis to population studies. As the amount of data generated from medical images increases, the ability to perform this task without human intervention becomes ever more de- sirable. One approach, known broadly as atlas-based segmentation, is to propagate labels from images which have already been manually labelled by clinical experts. Methods using this ap- proach have been shown to be e ective in many applications, demonstrating great potential for automatic labelling of large datasets. However, these methods usually require the use of image registration and are dependent on the outcome of the registration. Any registrations errors that occur are also propagated to the segmentation process and are likely to have an adverse e ect on segmentation accuracy. Recently, patch-based methods have been shown to allow a relaxation of the required image alignment, whilst achieving similar results. In general, these methods label each voxel of a target image by comparing the image patch centred on the voxel with neighbouring patches from an atlas library and assigning the most likely label according to the closest matches. The main contributions of this thesis focuses around this approach in providing accurate segmentation results whilst minimising the dependency on registration quality. In particular, this thesis proposes a novel kNN patch-based segmentation framework, which utilises both intensity and spatial information, and explore the use of spatial context in a diverse range of applications. The proposed methods extend the potential for patch-based segmentation to tolerate registration errors by rede ning the \locality" for patch selection and comparison, whilst also allowing similar looking patches from di erent anatomical structures to be di erentiated. The methods are evaluated on a wide variety of image datasets, ranging from the brain to the knees, demonstrating its potential with results which are competitive to state-of-the-art techniques.Open Acces

    Statistical Medial Model dor Cardiac Segmentation and Morphometry

    Get PDF
    In biomedical image analysis, shape information can be utilized for many purposes. For example, irregular shape features can help identify diseases; shape features can help match different instances of anatomical structures for statistical comparison; and prior knowledge of the mean and possible variation of an anatomical structure\u27s shape can help segment a new example of this structure in noisy, low-contrast images. A good shape representation helps to improve the performance of the above techniques. The overall goal of the proposed research is to develop and evaluate methods for representing shapes of anatomical structures. The medial model is a shape representation method that models a 3D object by explicitly defining its skeleton (medial axis) and deriving the object\u27s boundary via inverse-skeletonization . This model represents shape compactly, and naturally expresses descriptive global shape features like thickening , bending , and elongation . However, its application in biomedical image analysis has been limited, and it has not yet been applied to the heart, which has a complex shape. In this thesis, I focus on developing efficient methods to construct the medial model, and apply it to solve biomedical image analysis problems. I propose a new 3D medial model which can be efficiently applied to complex shapes. The proposed medial model closely approximates the medial geometry along medial edge curves and medial branching curves by soft-penalty optimization and local correction. I further develop a scheme to perform model-based segmentation using a statistical medial model which incorporates prior shape and appearance information. The proposed medial models are applied to a series of image analysis tasks. The 2D medial model is applied to the corpus callosum which results in an improved alignment of the patterns of commissural connectivity compared to a volumetric registration method. The 3D medial model is used to describe the myocardium of the left and right ventricles, which provides detailed thickness maps characterizing different disease states. The model-based myocardium segmentation scheme is tested in a heterogeneous adult MRI dataset. Our segmentation experiments demonstrate that the statistical medial model can accurately segment the ventricular myocardium and provide useful parameters to characterize heart function

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Landmark Localization, Feature Matching and Biomarker Discovery from Magnetic Resonance Images

    Get PDF
    The work presented in this thesis proposes several methods that can be roughly divided into three different categories: I) landmark localization in medical images, II) feature matching for image registration, and III) biomarker discovery in neuroimaging. The first part deals with the identification of anatomical landmarks. The motivation stems from the fact that the manual identification and labeling of these landmarks is very time consuming and prone to observer errors, especially when large datasets must be analyzed. In this thesis we present three methods to tackle this challenge: A landmark descriptor based on local self-similarities (SS), a subspace building framework based on manifold learning and a sparse coding landmark descriptor based on data-specific learned dictionary basis. The second part of this thesis deals with finding matching features between a pair of images. These matches can be used to perform a registration between them. Registration is a powerful tool that allows mapping images in a common space in order to aid in their analysis. Accurate registration can be challenging to achieve using intensity based registration algorithms. Here, a framework is proposed for learning correspondences in pairs of images by matching SS features and random sample and consensus (RANSAC) is employed as a robust model estimator to learn a deformation model based on feature matches. Finally, the third part of the thesis deals with biomarker discovery using machine learning. In this section a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability is proposed. The manifold subspace is built using data-driven regions of interest (ROI). These regions are learned via sparse regression, with stability selection. Also, probabilistic distribution models for different stages in the disease trajectory are estimated for different class populations in the low-dimensional manifold and used to construct a probabilistic scoring function.Open Acces

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Segmentación del hipocampo en imágenes de resonancia magnética utilizando un modelo de forma activa

    Get PDF
    Actualmente, el uso de las imágenes médicas tiene impacto en el área clínica, gracias a que el desarrollo científico y tecnológico permite a los médicos hacer un análisis y diagnóstico para distintas patologías del cerebro y otras estructuras anatómicas. La segmentación del área del hipocampo es de interés en el área médica, debido a que se considera un biomarcador para el diagnóstico de patologías neurológicas y psiquiátricas, incluyendo enfermedad de Alzheimer (EA), epilepsia y esquizofrenia (Dill et al., 2015; Boccardi et al., 2015), así como para revelar las diferencias anatómicas (atrofia) de personas, debido al envejecimiento o la demencia (Kim et al., 2013), su anatomía puede ser analizada con neuroimágenes médicas, por ejemplo, las imágenes de resonancia magnética (IRM). Dicha segmentación de la estructura anatómica puede ser de forma manual, semiautomática o automática. En esta tesis se evalúa un método para la segmentación de la forma del hipocampo en imágenes de resonancia magnética, utilizando un modelo de forma activa (ASM, por sus siglas en inglés Active Shape Model), el cual es utilizado en dos etapas: entrenamiento y ajuste. En la etapa del entrenamiento de ASM se utiliza un conjunto de imágenes segmentadas manualmente que sirven para formar un modelo de distribución de puntos (MDP), donde cada forma es representada por un conjunto de puntos que describen el borde de una estructura. Por otra parte, la etapa de ajuste consiste en segmentar nuevas formas en el que se analizan los niveles de gris alrededor de cada punto de referencia de la forma. Además, se utiliza una métrica de distancia (distancia euclidiana) con la que se mide la distancia entre los puntos de la segmentación manual y la segmentación ajustada con ASM para obtener los errores de ajuste. El modelo de forma activa fue construido con 41 imágenes de resonancia magnética tomadas de la base de datos Alzheimer’s Disease Neuroimagen Initiative (ADNI), de la Universidad del Sur de California (University, 2020). Las imágenes del conjunto de entrenamiento fueron marcadas con 30 puntos de referencia, dado que el hipocampo es una estructura anatómica cuya dimensión es de 4 a 4.5 cm de longitud y de 1 a 1.5 cm de ancho (Duvernoy, 2013). Se presenta una experimentación para validar el nivel de ajuste del modelo de forma activa, previo a una consistente revisión literaria del estado del arte. La experimentación de ajuste se realiza utilizando la técnica leave one out. En dicha experimentación se obtiene un error de ajuste medio de 1.85 mm, el cual está por debajo del máximo error permisible (2 mm) en diagnósticos clínicos (Yue et al., 2006), lo cual indica que son resultados aceptables. Por otra parte, se obtuvo el coeficiente de similitud de Dice (DSC, por sus siglas en inglés Dice Similarity Coefficient) para cuantificar la precisión de la segmentación. El resultado del DSC medio es de 62 %, lo cual indica un resultado por debajo del valor aceptable que es de 80%.PNPC CONACY

    A Probabilistic Approach To Non-Rigid Medical Image Registration

    Get PDF
    Non-rigid image registration is an important tool for analysing morphometric differences in subjects with Alzheimer's disease from structural magnetic resonance images of the brain. This thesis describes a novel probabilistic approach to non-rigid registration of medical images, and explores the benefits of its use in this area of neuroimaging. Many image registration approaches have been developed for neuroimaging. The vast majority suffer from two limitations: Firstly, the trade-off between image fidelity and regularisation requires selection. Secondly, only a point-estimate of the mapping between images is inferred, overlooking the presence of uncertainty in the estimation. This thesis introduces a novel probabilistic non-rigid registration model and inference scheme. This framework allows the inference of the parameters that control the level of regularisation, and data fidelity in a data-driven fashion. To allow greater flexibility, this model is extended to allow the level of data fidelity to vary across space. A benefit of this approach, is that the registration can adapt to anatomical variability and other image acquisition differences. A further advantage of the proposed registration framework is that it provides an estimate of the distribution of probable transformations. Additional novel contributions of this thesis include two proposals for exploiting the estimated registration uncertainty. The first of these estimates a local image smoothing filter, which is based on the registration uncertainty. The second approach incorporates the distribution of transformations into an ensemble learning scheme for statistical prediction. These techniques are integrated into standard frameworks for morphometric analysis, and are demonstrated to improve the ability to distinguish subjects with Alzheimer's disease from healthy controls

    Data efficient deep learning for medical image analysis: A survey

    Full text link
    The rapid evolution of deep learning has significantly advanced the field of medical image analysis. However, despite these achievements, the further enhancement of deep learning models for medical image analysis faces a significant challenge due to the scarcity of large, well-annotated datasets. To address this issue, recent years have witnessed a growing emphasis on the development of data-efficient deep learning methods. This paper conducts a thorough review of data-efficient deep learning methods for medical image analysis. To this end, we categorize these methods based on the level of supervision they rely on, encompassing categories such as no supervision, inexact supervision, incomplete supervision, inaccurate supervision, and only limited supervision. We further divide these categories into finer subcategories. For example, we categorize inexact supervision into multiple instance learning and learning with weak annotations. Similarly, we categorize incomplete supervision into semi-supervised learning, active learning, and domain-adaptive learning and so on. Furthermore, we systematically summarize commonly used datasets for data efficient deep learning in medical image analysis and investigate future research directions to conclude this survey.Comment: Under Revie

    ROBUST DEEP LEARNING METHODS FOR SOLVING INVERSE PROBLEMS IN MEDICAL IMAGING

    Get PDF
    The medical imaging field has a long history of incorporating machine learning algorithms to address inverse problems in image acquisition and analysis. With the impressive successes of deep neural networks on natural images, we seek to answer the obvious question: do these successes also transfer to the medical image domain? The answer may seem straightforward on the surface. Tasks like image-to-image transformation, segmentation, detection, etc., have direct applications for medical images. For example, metal artifact reduction for Computed Tomography (CT) and reconstruction from undersampled k-space signal for Magnetic Resonance (MR) imaging can be formulated as an image-to-image transformation; lesion/tumor detection and segmentation are obvious applications for higher level vision tasks. While these tasks may be similar in formulation, many practical constraints and requirements exist in solving these tasks for medical images. Patient data is highly sensitive and usually only accessible from individual institutions. This creates constraints on the available groundtruth, dataset size, and computational resources in these institutions to train performant models. Due to the mission-critical nature in healthcare applications, requirements such as performance robustness and speed are also stringent. As such, the big-data, dense-computation, supervised learning paradigm in mainstream deep learning is often insufficient to address these situations. In this dissertation, we investigate ways to benefit from the powerful representational capacity of deep neural networks while still satisfying the above-mentioned constraints and requirements. The first part of this dissertation focuses on adapting supervised learning to account for variations such as different medical image modality, image quality, architecture designs, tasks, etc. The second part of this dissertation focuses on improving model robustness on unseen data through domain adaptation, which ameliorates performance degradation due to distribution shifts. The last part of this dissertation focuses on self-supervised learning and learning from synthetic data with a focus in tomographic imaging; this is essential in many situations where the desired groundtruth may not be accessible

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore