854 research outputs found

    A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease Diagnosis

    Get PDF
    Classification is one of the most important tasks in machine learning. Due to feature redundancy or outliers in samples, using all available data for training a classifier may be suboptimal. For example, the Alzheimer’s disease (AD) is correlated with certain brain regions or single nucleotide polymorphisms (SNPs), and identification of relevant features is critical for computer-aided diagnosis. Many existing methods first select features from structural magnetic resonance imaging (MRI) or SNPs and then use those features to build the classifier. However, with the presence of many redundant features, the most discriminative features are difficult to be identified in a single step. Thus, we formulate a hierarchical feature and sample selection framework to gradually select informative features and discard ambiguous samples in multiple steps for improved classifier learning. To positively guide the data manifold preservation process, we utilize both labeled and unlabeled data during training, making our method semi-supervised. For validation, we conduct experiments on AD diagnosis by selecting mutually informative features from both MRI and SNP, and using the most discriminative samples for training. The superior classification results demonstrate the effectiveness of our approach, as compared with the rivals

    Detecting Anatomical Landmarks for Fast Alzheimer’s Disease Diagnosis

    Get PDF
    Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer’s disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation. In the training stage, in order to distinguish AD subjects from healthy controls (HCs), group comparisons, based on local morphological features, are first performed to identify brain regions that have significant group differences. In general, the centers of the identified regions become landmark locations (or AD landmarks for short) capable of differentiating AD subjects from HCs. In the testing stage, using the learned AD landmarks, the corresponding landmarks are detected in a testing image using an efficient technique based on a shape-constrained regression-forest algorithm. To improve detection accuracy, an additional set of salient and consistent landmarks are also identified to guide the AD landmark detection. Based on the identified AD landmarks, morphological features are extracted to train a support vector machine (SVM) classifier that is capable of predicting the AD condition. In the experiments, our method is evaluated on landmark detection and AD classification sequentially. Specifically, the landmark detection error (manually annotated versus automatically detected) of the proposed landmark detector is 2.41mm, and our landmark-based AD classification accuracy is 83.7%. Lastly, the AD classification performance of our method is comparable to, or even better than, that achieved by existing region-based and voxel-based methods, while the proposed method is approximately 50 times faster

    How to build a functional connectomic biomarker for mild cognitive impairment from source reconstructed MEG resting-state activity: the combination of ROI representation and connectivity estimator matters

    Get PDF
    Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal and cingulo-opercular network. Our analysis supports the notion of analysing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings

    Epileptic seizure detection and prediction based on EEG signal

    Get PDF
    Epilepsy is a kind of chronic brain disfunction, manifesting as recurrent seizures which is caused by sudden and excessive discharge of neurons. Electroencephalogram (EEG) recordings is regarded as the golden standard for clinical diagnosis of epilepsy disease. The diagnosis of epilepsy disease by professional doctors clinically is time-consuming. With the help artificial intelligence algorithms, the task of automatic epileptic seizure detection and prediction is called a research hotspot. The thesis mainly contributes to propose a solution to overfitting problem of EEG signal in deep learning and a method of multiple channels fusion for EEG features. The result of proposed method achieves outstanding performance in seizure detection task and seizure prediction task. In seizure detection task, this paper mainly explores the effect of the deep learning in small data size. This thesis designs a hybrid model of CNN and SVM for epilepsy detection compared with end-to-end classification by deep learning. Another technique for overfitting is new EEG signal generation based on decomposition and recombination of EEG in time-frequency domain. It achieved a classification accuracy of 98.8%, a specificity of 98.9% and a sensitivity of 98.4% on the classic Bonn EEG data. In seizure prediction task, this paper proposes a feature fusion method for multi-channel EEG signals. We extract a three-order tensor feature in temporal, spectral and spatial domain. UMLDA is a tensor-to-vector projection method, which ensures minimal redundancy between feature dimensions. An excellent experimental result was finally obtained, including an average accuracy of 95%, 94% F1-measure and 90% Kappa index

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Efficient Structure Slimming for Spiking Neural Networks

    Get PDF
    Spiking neural networks (SNNs) are deeply inspired by biological neural information systems. Compared to convolutional neural networks (CNNs), SNNs are low power consumption because of their spike based information processing mechanism. However, most of the current structures of SNNs are fully-connected or converted from deep CNNs which poses redundancy connections. While the structure and topology in human brain systems are sparse and efficient. This paper aims at taking full advantage of sparse structure and low power consumption which lie in human brain and proposed efficient structure slimming methods. Inspired by the development of biological neural network structures, this paper designed types of structure slimming methods including neuron pruning and channel pruning. In addition to pruning, this paper also considers the growth and development of the nervous system. Through iterative application of the proposed neural pruning and rewiring algorithms, experimental evaluations on CIFAR-10, CIFAR-100, and DVS-Gesture datasets demonstrate the effectiveness of the structure slimming methods. When the parameter count is reduced to only about 10% of the original, the performance decreases by less than 1%
    • …
    corecore