216 research outputs found

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The use of the Hilbert–Huang transform in the analysis of biomedical signals has increased during the past few years, but its use for respiratory sound (RS) analysis is still limited. The technique includes two steps: empirical mode decomposition (EMD) and instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of EMD has been widely discussed, this technique continues to be used in many RS analysis algorithms. In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted multivariate EMD (NA-MEMD) as means for preventing this effect. We propose quantitative parameters for measuring the size, reduction of MM, and residual noise level of each method. These parameters showed that EEMD is a good solution for MM, thus outperforming NA-MEMD. After testing different IF estimators, we propose Kay¿s method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy concentrations and high time and high frequency resolutions. We also propose an algorithm for the automatic characterization of continuous adventitious sounds (CAS). The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes it possible to determine CAS more precisely than other conventional time-frequency techniques.Postprint (author's final draft

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Empirical Functional PCA for 3D Image Feature Extraction Through Fractal Sampling.

    Get PDF
    Medical image classification is currently a challenging task that can be used to aid the diagnosis of different brain diseases. Thus, exploratory and discriminative analysis techniques aiming to obtain representative features from the images play a decisive role in the design of effective Computer Aided Diagnosis (CAD) systems, which is especially important in the early diagnosis of dementia. In this work, we present a technique that allows using specific time series analysis techniques with 3D images. This is achieved by sampling the image using a fractal-based method which preserves the spatial relationship among voxels. In addition, a method called Empirical functional PCA (EfPCA) is presented, which combines Empirical Mode Decomposition (EMD) with functional PCA to express an image in the space spanned by a basis of empirical functions, instead of using components computed by a predefined basis as in Fourier or Wavelet analysis. The devised technique has been used to classify images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and the Parkinson Progression Markers Initiative (PPMI), achieving accuracies up to 93% and 92% differential diagnosis tasks (AD versus controls and PD versus Controls, respectively). The results obtained validate the method, proving that the information retrieved by our methodology is significantly linked to the diseases.This work was partly supported by the MINECO/ FEDER under TEC2015-64718-R and PSI2015- 65848-R projects and the Consejer´ıa de Innovaci´on, Ciencia y Empresa (Junta de Andaluc´ıa, Spain) under the Excellence Project P11-TIC-7103 as well as the Salvador deMadariaga Mobility Grants 2017. Data collection and sharing for this project was funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Depart ment of Defense award number W81XWH-12-2- 0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contribu tions from the following: AbbVie, Alzheimer’s Asso ciation; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol Myer Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Ho mann-La Roche Ltd and its ali ated company Genentech, Inc.; Fujirebio; GE Health care; IXICO Ltd.; Janssen Alzheimer Immunother apy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; P zer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clin ical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coor dinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern Cali fornia. PPMI a public-private partnership is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including [list the full names of all of the PPMI funding partners found at www.ppmi-info.org/fundingpartners]

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field

    Learning Patterns with Kernels and Learning Kernels from Patterns

    Get PDF
    A major technique in learning involves the identification of patterns and their use to make predictions. In this work, we examine the symbiotic relationship between patterns and Gaussian process regression (GPR), which is mathematically equivalent to kernel interpolation. We introduce techniques where GPR can be used to learn patterns in denoising and mode (signal) decomposition. Additionally, we present the kernel flow (KF) algorithm which learns a kernels from patterns in the data with methodology inspired by cross validation. We further show how the KF algorithm can be applied to artificial neural networks (ANNs) to make improvements to learning patterns in images. In our denoising and mode decomposition examples, we show how kernels can be constructed to estimate patterns that may be hidden due to data corruption. In other words, we demonstrate how to learn patterns with kernels. Donoho and Johnstone proposed a near-minimax method for reconstructing an unknown smooth function u from noisy data u + ζ by translating the empirical wavelet coefficients of u + ζ towards zero. We consider the situation where the prior information on the unknown function u may not be the regularity of u, but that of ℒu where ℒ is a linear operator, such as a partial differential equation (PDE) or a graph Laplacian. We show that a near-minimax approximation of u can be obtained by truncating the ℒ-gamblet (operator-adapted wavelet) coefficients of u + ζ. The recovery of u can be seen to be precisely a Gaussian conditioning of u + ζ on measurement functions with length scale dependent on the signal-to-noise ratio. We next introduce kernel mode decomposition (KMD), which has been designed to learn the modes vi = ai(t)yi(θi(t)) of a (possibly noisy) signal Σivi when the amplitudes ai, instantaneous phases θi, and periodic waveforms yi may all be unknown. GPR with Gabor wavelet-inspired kernels is used to estimate ai, θi, and yi. We show near machine precision recovery under regularity and separation assumptions on the instantaneous amplitudes ai and frequencies &#729;θi. GPR and kernel interpolation require the selection of an appropriate kernel modeling the data. We present the KF algorithm, which is a numerical-approximation approach to this selection. The main principle the method utilizes is that a "good" kernel is able to make accurate predictions with small subsets of a training set. In this way, we learn a kernel from patterns. In image classification, we show that the learned kernels are able to classify accurately using only one training image per class and show signs of unsupervised learning. Furthermore, we introduce the combination of the KF algorithm with conventional neural-network training. This combination is able to train the intermediate-layer outputs of the network simultaneously with the final-layer output. We test the proposed method on Convolutional Neural Networks (CNNs) and Wide Residual Networks (WRNs) without alteration of their structure or their output classifier. We report reduced test errors, decreased generalization gaps, and increased robustness to distribution shift without significant increase in computational complexity relative to standard CNN and WRN training (with Drop Out and Batch Normalization). As a whole, this work highlights the interplay between kernel techniques with pattern recognition and numerical approximation.</p

    Applied Harmonic Analysis and Data Processing

    Get PDF
    Massive data sets have their own architecture. Each data source has an inherent structure, which we should attempt to detect in order to utilize it for applications, such as denoising, clustering, anomaly detection, knowledge extraction, or classification. Harmonic analysis revolves around creating new structures for decomposition, rearrangement and reconstruction of operators and functions—in other words inventing and exploring new architectures for information and inference. Two previous very successful workshops on applied harmonic analysis and sparse approximation have taken place in 2012 and in 2015. This workshop was the an evolution and continuation of these workshops and intended to bring together world leading experts in applied harmonic analysis, data analysis, optimization, statistics, and machine learning to report on recent developments, and to foster new developments and collaborations

    Spatially and temporally distinct encoding of muscle and kinematic information in rostral and caudal primary motor cortex

    Get PDF
    The organising principle of human motor cortex does not follow an anatomical body map, but rather a distributed representational structure in which motor primitives are com- bined to produce motor outputs. Electrophysiological recordings in primates and human imaging data suggest that M1 encodes kinematic features of movements, such as joint position and velocity. However, M1 exhibits well-documented sensory responses to cu- taneous and proprioceptive stimuli, raising questions regarding the origins of kinematic motor representations: are they relevant in top-down motor control, or are they an epiphe- nomenon of bottom-up sensory feedback during movement? Here we provide evidence for spatially and temporally distinct encoding of kinematic and muscle information in human M1 during the production of a wide variety of naturalistic hand movements. Using a powerful combination of high-field fMRI and MEG, a spatial and temporal multivariate representational similarity analysis revealed encoding of kinematic information in more caudal regions of M1, over 200 ms before movement onset. In contrast, patterns of muscle activity were encoded in more rostral motor regions much later after movements began. We provide compelling evidence that top-down control of dexterous movement engages kinematic representations in caudal regions of M1 prior to movement production
    • …
    corecore