105 research outputs found

    Computer-Aided Clinical Decision Support Systems for Atrial Fibrillation

    Get PDF
    Clinical decision support systems (clinical DSSs) are widely used today for various clinical applications such as diagnosis, treatment, and recovery. Clinical DSS aims to enhance the end‐to‐end therapy management for the doctors, and also helps to provide improved experience for patients during each phase of the therapy. The goal of this chapter is to provide an insight into the clinical DSS associated with the highly prevalent heart rhythm disorder, atrial fibrillation (AF). The use of clinical DSS in AF management is ubiquitous, starting from detection of AF through sophisticated electrophysiology treatment procedures, all the way to monitoring the patient\u27s health during follow‐ups. Most of the software associated with AF DSS are developed based on signal processing, image processing, and artificial intelligence techniques. The chapter begins with a brief description of DSS in general and then introduces DSS that are used for various clinical applications. The chapter continues with a background on AF and some relevant mechanisms. Finally, a couple of clinical DSS used today in regard with AF are discussed, along with some proposed methods for potential implementation of clinical DSS for detection of AF, prediction of an AF treatment outcome, and localization of AF targets during a treatment procedure

    Reflex syncope : an integrative physiological approach

    Get PDF
    Síncope, a forma mais comum de perda temporária de consciência é responsável por até 5% das idas aos serviços de emergência e até 3% dos internamentos hospitalares. É um problema médico frequente, com múltiplos gatilhos, incapacitante, potencialmente perigoso e desafiante em termos diagnósticos e terapêuticos. Assim, é necessária uma anamnese detalhada para primeiro estabelecer a natureza da perda de consciência, mas, após o diagnóstico, as medidas terapêuticas existentes são pouco eficazes. Embora a fisiopatologia da síncope vasovagal ainda não tenha sido completamente esclarecida, alguns mecanismos subjacentes foram já desvendados. Em última análise, a síncope depende de uma falha transitória na perfusão cerebral pelo que qualquer factor que afecte a circulação sanguínea cerebral pode determinar a ocorrência de síncope. Assim, o objectivo do presente estudo é caracterizar o impacto hemodinâmico e autonómico nos mecanismos subjacentes à síncope reflexa, para melhorar o diagnóstico, o prognóstico e a qualidade de vida dos doentes e dos seus cuidadores. Para isso, desenhámos e implementámos novas ferramentas matemáticas e computacionais que permitem uma avaliação autonómica e hemodinâmica integrada, de forma a aprofundar a compreensão do seu envolvimento nos mecanismos de síncope reflexa. Além disso, refinando a precisão do diagnóstico, a sensibilidade e a especificidade do teste de mesa de inclinação (“tilt test”), estabelecemos uma ferramenta preditiva do episódio iminente de síncope. Isso permitiu-nos estabelecer alternativas de tratamento eficazes e personalizadas para os doentes refractários às opções convencionais, sob a forma de um programa de treino de ortostatismo (“tilt training”), contribuindo para o aumento da sua qualidade de vida e para a redução dos custos directos e indirectos da sua assistência médica. Assim, num estudo verdadeiramente multidisciplinar envolvendo doentes com síncope reflexa refractária à terapêutica, conseguimos demonstrar uma assincronia funcional das respostas reflexas autonómicas e hemodinâmicas, expressas por um desajuste temporal entre o débito cardíaco e as adaptações de resistência total periférica, uma resposta baroreflexa atrasada e um desequilíbrio incremental do tónus autonómico que, em conjunto, poderão resultar de uma disfunção do sistema nervoso autónomo que se traduz por uma reserva simpática diminuída. Igualmente, desenhámos, testámos e implementámos uma plataforma computacional e respectivo software associado - a plataforma FisioSinal –incluindo novas formas, mais dinâmicas, de avaliação integrada autonómica e hemodinâmica, que levaram ao desenvolvimento de algoritmos preditivos para a estratificação de doentes com síncope. Além disso, na aplicação dessas ferramentas, comprovámos a eficácia de um tratamento não invasivo, não disruptivo e integrado, focado na neuromodulação das variáveis autonómicas e cardiovasculares envolvidas nos mecanismos de síncope. Esta terapêutica complementar levou a um aumento substancial da qualidade de vida dos doentes e à abolição dos eventos sincopais na grande maioria dos doentes envolvidos. Em conclusão, o nosso trabalho contribuiu para preencher a lacuna entre a melhor informação científica disponível e sua aplicação na prática clínica, sustentando-se nos três pilares da medicina translacional: investigação básica, clínica e comunidade.Syncope, the most common form of transient loss of consciousness, accounts for up to 5% of emergency room visits and up to 3% of hospital admissions. It is a frequent medical problem with multiple triggers, potentially dangerous, incapacitating, and challenging to diagnose. Therefore, a detailed clinical history is needed first to establish the nature of the loss of consciousness. However, after diagnosis, the therapeutic measures available are still very poor. Although the exact pathophysiology of vasovagal syncope remains to be clarified, some underlying mechanisms have been unveiled, dependent not only on the cause of syncope but also on age and various other factors that affect clinical presentation. Ultimately, syncope depends on a failure of the circulation to perfuse the brain, so any factor affecting blood circulation may determine syncope occurrence. Thus, the purpose of the present study is to understand the impact of the hemodynamic and autonomic functions on reflex syncope mechanisms to improve patients diagnose, prognosis and general quality of life. Bearing that in mind, we designed and implemented new mathematical and computational tools for autonomic and hemodynamic evaluation, in order to deepen the understanding of their involvement in reflex syncope mechanisms. Furthermore, by refining the diagnostic accuracy, sensitivity and specificity of the head-up tilt-table test, we established a predictive tool for the impending syncopal episode. This allowed us to establish effective and personalised treatment alternatives to patient’s refractory to conventional options, contributing to their increase in the quality of life and a reduction of health care and associated costs. In accordance, in a truly multidisciplinary study involving reflex syncope patients, we were able to show an elemental functional asynchrony of hemodynamic and autonomic reflex responses, expressed through a temporal mismatch between cardiac output and total peripheral resistance adaptations, a deferred baroreflex response and an unbalanced, but incremental, autonomic tone, all contributing to autonomic dysfunction, translated into a decreased sympathetic reserve. Through the design, testing and implementation of a computational platform and the associated software - FisioSinal platform -, we developed novel and dynamic ways of autonomic and hemodynamic evaluation, whose data lead to the development of predictive algorithms for syncope patients’risk stratification. Furthermore, through the application of these tools, we showed the effectiveness of a non-invasive, non-disruptive and integrated treatment, focusing on neuromodulation of the autonomic and cardiovascular variables involved in the syncope mechanisms, leading to a substantial increase of quality of life and the abolishment of syncopal events in a vast majority of the enrolled patients. In conclusion, our work contributed to fill the gap between the best available scientific information and its application in the clinical practice by tackling the three pillars of translational medicine: bench-side, bedside and community

    Oscillatory behavior of P wave duration and PR interval in experimental congestive heart failure: a preliminary study

    Get PDF
    Objective: The relationship between the autonomic nervous system (ANS) modulation of the sinus node and heart rate variability has been extensively investigated. The current study sought to evaluate, in an animal experimental model of pacing-induced tachycardia congestive heart failure (CHF), a possible ANS influence on the P wave duration and PR interval oscillations. Approach: Short-term (5 min) time and frequency domain analysis has been obtained in six dogs for the following electrocardiographic intervals: P wave duration (P), from the onset to peak of P wave (P p), from the onset of P wave to the q onset (PR) and from the end of P wave to the onset of q wave (P e R). Direct vagal nerve activity (VNA), stellate ganglion nerve activity (SGNA) and electrocardiogram (ECG) intervals have been evaluated contextually by implantation of three bipolar recording leads. Main results: At the baseline, multiple regression analysis pointed out that VNA was strongly positively associated with the standard deviation of PP and P e R intervals (r 2:0.997, p < 0.05). The same variable was also positively associated with high-frequency (HF) of P expressed in normalized units, of P p, and of P e R (b: 0.001) (r 2: 0.993; p < 0.05). During CHF, most of the time and frequency domain variability significantly decreased from 20% to 50% in comparison to the baseline values (p < 0.05) and SGNA correlated inversely with the low frequency (LF) obtained from P e R (p < 0.05) and PR (p < 0.05) (r 2:0.899, p < 0.05). LF components, expressed in absolute and normalized power, obtained from all studied intervals, were reduced significantly during CHF. Any difference between the RR and PP spectral components was observed. Significance: The data showed a significant relationship between ANS and atrial ECG variables, independent of the cycle duration. In particular, the oscillations were vagal mediated at the baseline, while sympathetic mediated during CHF. Whereas P wave variability might have a clinical utility in CHF management, it needs to be addressed in specific studies

    Assessment of Time and Frequency Domain Entropies to Detect Sleep Apnoea in Heart Rate Variability Recordings from Men and Women

    Get PDF
    Producción CientíficaHeart rate variability (HRV) provides useful information about heart dynamics both under healthy and pathological conditions. Entropy measures have shown their utility to characterize these dynamics. In this paper, we assess the ability of spectral entropy (SE) and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea syndrome (SAHS) in HRV recordings from 188 subjects. Additionally, we evaluate eventual differences in these analyses depending on the gender. We found that the SE computed from the very low frequency band and the low frequency band showed ability to characterize SAHS regardless the gender; and that MsE features may be able to distinguish gender specificities. SE and MsE showed complementarity to detect SAHS, since several features from both analyses were automatically selected by the forward-selection backward-elimination algorithm. Finally, SAHS was modelled through logistic regression (LR) by using optimum sets of selected features. Modelling SAHS by genders reached significant higher performance than doing it in a jointly way. The highest diagnostic ability was reached by modelling SAHS in women. The LR classifier achieved 85.2% accuracy (Acc) and 0.951 area under the ROC curve (AROC). LR for men reached 77.6% Acc and 0.895 AROC, whereas LR for the whole set reached 72.3% Acc and 0.885 AROC. Our results show the usefulness of the SE and MsE analyses of HRV to detect SAHS, as well as suggest that, when using HRV, SAHS may be more accurately modelled if data are separated by gender.Ministerio de Economía, Industria y Competitividad (TEC2011-22987)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA059U13

    The European Network for Translational Research in Atrial Fibrillation (EUTRAF): objectives and initial results.

    Get PDF
    Atrial fibrillation (AF) is the most common sustained arrhythmia in the general population. As an age-related arrhythmia AF is becoming a huge socio-economic burden for European healthcare systems. Despite significant progress in our understanding of the pathophysiology of AF, therapeutic strategies for AF have not changed substantially and the major challenges in the management of AF are still unmet. This lack of progress may be related to the multifactorial pathogenesis of atrial remodelling and AF that hampers the identification of causative pathophysiological alterations in individual patients. Also, again new mechanisms have been identified and the relative contribution of these mechanisms still has to be established. In November 2010, the European Union launched the large collaborative project EUTRAF (European Network of Translational Research in Atrial Fibrillation) to address these challenges. The main aims of EUTRAF are to study the main mechanisms of initiation and perpetuation of AF, to identify the molecular alterations underlying atrial remodelling, to develop markers allowing to monitor this processes, and suggest strategies to treat AF based on insights in newly defined disease mechanisms. This article reports on the objectives, the structure, and initial results of this network

    Quality Control in ECG-based Atrial Fibrillation Screening

    Get PDF
    This thesis comprises an introductory chapter and four papers related to quality control in ECG-based atrial fibrillation (AF) screening. Atrial fibrillation is a cardiac arrhythmia characterized by an irregular rhythm and constitutes a major risk factor for stroke. Anticoagulation therapy significantly reduces this risk, and therefore, AF screening is motivated. Atrial fibrillation screening is often done using ECGs recorded outside the clinical environment. However, the higher susceptibility of such ECGs to noise and artifacts makes the identification of patients with AF challenging. The present thesis addresses these challenges at different levels in the data analysis chain. Paper I presents a convolutional neural network (CNN)-based approach to identify transient noise and artifacts in the detected beat sequence before AF detection. The results show that by inserting a CNN, prior to the AF detector, the number of false AF detections is reduced by 22.5% without any loss in the sensitivity, suggesting that the number of recordings requiring expert review can be significantly reduced. Paper II investigates the signal quality of a novel wet electrode technology, and how the improved signal quality translates to improved beat detection and AF detection performance. The novel electrode technology is designed for reduction of motion artifacts typically present in Holter ECG recordings. The novel electrode technology shows a better signal quality and detection performance when compared to a commercially available counterpart, especially when the subject becomes more active. Thus, it has the potential to reduce the review burden and costs associated with ambulatory monitoring.Paper III introduces a detector for short-episode supraventricular tachycardia (sSVT) in AF screening recordings, which has been shown to be associated with an increased risk for future AF. Therefore, the identification of subjects with suchepisodes may increase the usefulness of AF screening. The proposed detector is based on the assumption that the beats in an sSVT episode display similar morphology, and that episodes including detections of deviating morphology should be excluded. The results show that the number of false sSVT detections can be significantly reduced (by a factor of 6) using the proposed detector.Paper IV introduces a novel ECG simulation tool, which is capable of producing ECGs with various arrhythmia patterns and with several different types of noise and artifacts. Specifically, the ECG simulator includes models to generate noise observed in ambulatory recordings, and when recording using handheld recording devices. The usefulness of the simulator is illustrated in terms of AF detection performance when the CNN training in Paper I is performed using simulated data. The results show a very similar performance when training with simulated data compared to when training with real data. Thus, the proposed simulator is a valuable tool in the development and training of automated ECG processing algorithms. Together, the four parts, in different ways, contribute to improved algorithmic efficiency in AF screening

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    Non-invasive identification of atrial fibrillation drivers

    Full text link
    Atrial fibrillation (AF) is one of the most common cardiac arrhythmias. Nowadays the fibrillatory process is known to be provoked by the high-frequency reentrant activity of certain atrial regions that propagates the fibrillatory activity to the rest of the atrial tissue, and the electrical isolation of these key regions has demonstrated its effectiveness in terminating the fibrillatory process. The location of the dominant regions represents a major challenge in the diagnosis and treatment of this arrhythmia. With the aim to detect and locate the fibrillatory sources prior to surgical procedure, non-invasive methods have been developed such as body surface electrical mapping (BSPM) which allows to record with high spatial resolution the electrical activity on the torso surface or the electrocardiographic imaging (ECGI) which allows to non-invasively reconstruct the electrical activity in the atrial surface. Given the novelty of these systems, both technologies suffer from a lack of scientific knowledge about the physical and technical mechanisms that support their operation. Therefore, the aim of this thesis is to increase that knowledge, as well as studying the effectiveness of these technologies for the localization of dominant regions in patients with AF. First, it has been shown that BSPM systems are able to noninvasively identify atrial rotors by recognizing surface rotors after band-pass filtering. Furthermore, the position of such surface rotors is related to the atrial rotor location, allowing the distinction between left or right atrial rotors. Moreover, it has been found that the surface electrical maps in AF suffer a spatial smoothing effect by the torso conductor volume, so the surface electrical activity can be studied with a relatively small number of electrodes. Specifically, it has been seen that 12 uniformly distributed electrodes are sufficient for the correct identification of atrial dominant frequencies, while at least 32 leads are needed for non-invasive identification of atrial rotors. Secondly, the effect of narrowband filtering on the effectiveness of the location of reentrant patterns was studied. It has been found that this procedure allows isolating the reentrant electrical activity caused by the rotor, increasing the detection rate for both invasive and surface maps. However, the spatial smoothing caused by the regularization of the ECGI added to the temporal filtering causes a large increase in the spurious reentrant activity, making it difficult to detect real reentrant patterns. However, it has been found that maps provided by the ECGI without temporal filtering allow the correct detection of reentrant activity, so narrowband filtering should be applied for intracavitary or surface signal only. Finally, we studied the stability of the markers used to detect dominant regions in ECGI, such as frequency maps or the rotor presence. It has been found that in the presence of alterations in the conditions of the inverse problem, such as electrical or geometrical noise, these markers are significantly more stable than the ECGI signal morphology from which they are extracted. In addition, a new methodology for error reduction in the atrial spatial location based on the curvature of the curve L has been proposed. The results presented in this thesis showed that BSPM and ECGI systems allows to non-invasively locate the presence of high-frequency rotors, responsible for the maintenance of AF. This detection has been proven to be unambiguous and robust, and the physical and technical mechanisms that support this behavior have been studied. These results indicate that both non-invasive systems provide information of great clinical value in the treatment of AF, so their use can be helpful for selecting and planning atrial ablation procedures.La fibrilación auricular (FA) es una de las arritmias cardiacas más frecuentes. Hoy en día se sabe que el proceso fibrilatorio está provocado por la actividad reentrante a alta frecuencia de ciertas regiones auriculares que propagan la actividad fibrilatoria en el resto del tejido auricular, y se ha demostrado que el aislamiento eléctrico de estas regiones dominantes permite detener el proceso fibrilatorio. La localización de las regiones dominantes supone un gran reto en el diagnóstico y tratamiento de la FA. Con el objetivo de poder localizar las fuentes fibrilatorias con anterioridad al procedimiento quirúrgico, se han desarrollado métodos no invasivos como la cartografía eléctrica de superficie (CES) que registra con gran resolución espacial la actividad eléctrica en la superficie del torso o la electrocardiografía por imagen (ECGI) que permite reconstruir la actividad eléctrica en la superficie auricular. Dada la novedad de estos sistemas, existe una falta de conocimiento científico sobre los mecanismos físicos y técnicos que sustentan su funcionamiento. Por lo tanto, el objetivo de esta tesis es aumentar dicho conocimiento, así como estudiar la eficacia de ambas tecnologías para la localización de regiones dominantes en pacientes con FA. En primer lugar, ha visto que los sistemas CES permiten identificar rotores auriculares mediante el reconocimiento de rotores superficiales tras el filtrado en banda estrecha. Además, la posición de los rotores superficiales está relacionada con la localización de dichos rotores, permitiendo la distinción entre rotores de aurícula derecha o izquierda. Por otra parte, se ha visto que los mapas eléctricos superficiales durante FA sufren una gran suavizado espacial por el efecto del volumen conductor del torso, lo que permite que la actividad eléctrica superficial pueda ser estudiada con un número relativamente reducido de electrodos. Concretamente, se ha visto que 12 electrodos uniformemente distribuidos son suficientes para una correcta identificación de frecuencias dominantes, mientras que son necesarios al menos 32 para una correcta identificación de rotores auriculares. Por otra parte, también se ha estudiado el efecto del filtrado en banda estrecha sobre la eficacia de la localización de patrones reentrantes. Así, se ha visto que este procedimiento permite aislar la actividad eléctrica reentrante provocada por el rotor, aumentando la tasa de detección tanto para señal obtenida de manera invasiva como para los mapas superficiales. No obstante, este filtrado temporal sobre la señal de ECGI provoca un gran aumento de la actividad reentrante espúrea que dificulta la detección de patrones reentrantes reales. Sin embargo, los mapas ECGI sin filtrado temporal permiten la detección correcta de la actividad reentrante, por lo el filtrado debería ser aplicado únicamente para señal intracavitaria o superficial. Por último, se ha estudiado la estabilidad de los marcadores utilizados en ECGI para detectar regiones dominantes, como son los mapas de frecuencia o la presencia de rotores. Se ha visto que en presencia de alteraciones en las condiciones del problema inverso, como ruido eléctrico o geométrico, estos marcadores son significativamente más estables que la morfología de la propia señal ECGI. Además, se ha propuesto una nueva metodología para la reducción del error en la localización espacial de la aurícula basado en la curvatura de la curva L. Los resultados presentados en esta tesis revelan que los sistemas de CES y ECGI permiten localizar de manera no invasiva la presencia de rotores de alta frecuencia. Esta detección es univoca y robusta, y se han estudiado los mecanismos físicos y técnicos que sustentan dicho comportamiento. Estos resultados indican que ambos sistemas no invasivos proporcionan información de gran valor clínico en el tratamiento de la FA, por lo que su uso puede ser de gran ayuda para la selección y planificaciLa fibril·lació auricular (FA) és una de les arítmies cardíaques més freqüents. Hui en dia es sabut que el procés fibrilatori està provocat per l'activitat reentrant de certes regions auriculars que propaguen l'activitat fibril·latoria a la resta del teixit auricular, i s'ha demostrat que l'aïllament elèctric d'aquestes regions dominants permet aturar el procés fibrilatori. La localització de les regions dominants suposa un gran repte en el diagnòstic i tractament d'aquesta arítmia. Amb l'objectiu de poder localitzar fonts fibril·latories amb anterioritat al procediment quirúrgic s'han desenvolupat mètodes no invasius com la cartografia elèctrica de superfície (CES) que registra amb gran resolució espacial l'activitat elèctrica en la superfície del tors o l'electrocardiografia per imatge (ECGI) que permet obtenir de manera no invasiva l'activitat elèctrica en la superfície auricular. Donada la relativa novetat d'aquests sistemes, existeix una manca de coneixement científic sobre els mecanismes físics i tècnics que sustenten el seu funcionament. Per tant, l'objectiu d'aquesta tesi és augmentar aquest coneixement, així com estudiar l'eficàcia d'aquestes tecnologies per a la localització de regions dominants en pacients amb FA. En primer lloc, s'ha vist que els sistemes CES permeten identificar rotors auriculars mitjançant el reconeixement de rotors superficials després del filtrat en banda estreta. A més, la posició dels rotors superficials està relacionada amb la localització d'aquests rotors, permetent la distinció entre rotors de aurícula dreta o esquerra. També s'ha vist que els mapes elèctrics superficials durant FA pateixen un gran suavitzat espacial per l'efecte del volum conductor del tors, el que permet que l'activitat elèctrica superficial pugui ser estudiada amb un nombre relativament reduït d'elèctrodes. Concretament, s'ha vist que 12 elèctrodes uniformement distribuïts són suficients per a una correcta identificació de freqüències dominants auriculars, mentre que són necessaris almenys 32 per a una correcta identificació de rotors auriculars. D'altra banda, també s'ha estudiat l'efecte del filtrat en banda estreta sobre l'eficàcia de la localització de patrons reentrants. Així, s'ha vist que aquest procediment permet aïllar l'activitat elèctrica reentrant provocada pel rotor, augmentant la taxa de detecció tant pel senyal obtingut de manera invasiva com per als mapes superficials. No obstant això, aquest filtrat temporal sobre el senyal de ECGI provoca un gran augment de l'activitat reentrant espúria que dificulta la detecció de patrons reentrants reals. A més, els mapes proporcionats per la ECGI sense filtrat temporal permeten la detecció correcta de l'activitat reentrant, per la qual cosa el filtrat hauria de ser aplicat únicament per a senyal intracavitària o superficial. Per últim, s'ha estudiat l'estabilitat dels marcadors utilitzats en ECGI per a detectar regions auriculars dominants, com són els mapes de freqüència o la presència de rotors. S'ha vist que en presència d'alteracions en les condicions del problema invers, com soroll elèctric o geomètric, aquests marcadors són significativament més estables que la morfologia del mateix senyal ECGI. A més, s'ha proposat una nova metodologia per a la reducció de l'error en la localització espacial de l'aurícula basat en la curvatura de la corba L. Els resultats presentats en aquesta tesi revelen que els sistemes de CES i ECGI permeten localitzar de manera no invasiva la presència de rotors d'alta freqüència. Aquesta detecció és unívoca i robusta, i s'han estudiat els mecanismes físics i tècnics que sustenten aquest comportament. Aquests resultats indiquen que els dos sistemes no invasius proporcionen informació de gran valor clínic en el tractament de la FA, pel que el seu ús pot ser de gran ajuda per a la selecció i planificació de procediments d'ablació auricular.Rodrigo Bort, M. (2016). Non-invasive identification of atrial fibrillation drivers [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75346TESISPremios Extraordinarios de tesis doctorale

    Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the European Heart Rhythm Association and European Society of Cardiology Working Group on eCardiology in collaboration with the Heart Rhythm Society, Asia Pacific Heart Rhythm Society, Latin American Heart Rhythm Society and Computing in Cardiology

    Get PDF
    We aim to provide a critical appraisal of basic concepts underlying signal recording and processing technologies applied for (i) atrial fibrillation (AF) mapping to unravel AF mechanisms and/or identifying target sites for AF therapy and (ii) AF detection, to optimize usage of technologies, stimulate research aimed at closing knowledge gaps, and developing ideal AF recording and processing technologies. Recording and processing techniques for assessment of electrical activity during AF essential for diagnosis and guiding ablative therapy including body surface electrocardiograms (ECG) and endo- or epicardial electrograms (EGM) are evaluated. Discussion of (i) differences in uni-, bi-, and multi-polar (omnipolar/Laplacian) recording modes, (ii) impact of recording technologies on EGM morphology, (iii) global or local mapping using various types of EGM involving signal processing techniques including isochronal-, voltage- fractionation-, dipole density-, and rotor mapping, enabling derivation of parameters like atrial rate, entropy, conduction velocity/direction, (iv) value of epicardial and optical mapping, (v) AF detection by cardiac implantable electronic devices containing various detection algorithms applicable to stored EGMs, (vi) contribution of machine learning (ML) to further improvement of signals processing technologies. Recording and processing of EGM (or ECG) are the cornerstones of (body surface) mapping of AF. Currently available AF recording and processing technologies are mainly restricted to specific applications or have technological limitations. Improvements in AF mapping by obtaining highest fidelity source signals (e.g. catheter–electrode combinations) for signal processing (e.g. filtering, digitization, and noise elimination) is of utmost importance. Novel acquisition instruments (multi-polar catheters combined with improved physical modelling and ML techniques) will enable enhanced and automated interpretation of EGM recordings in the near future

    HHT-based Analysis of ECG Signals of Patients with Borderline Mental Disorders

    Get PDF
    This paper describes a solution for borderline mental disorders detection. This approach is based on the ECG processing by Hilbert-Huang Transformation. The described approach allows to develop an additional module for mental disorders diagnostic systems. The research is based on the fact that in the conditions of borderline mental disorders there are changes in patients&#x0027; heart function. Detection of significant ECG informative parameters is based on the effective and accurate measurement of amplitude, time, frequency and energy parameters of the ECG signal. A verified and registered database of 780 ECG signals of patients with borderline mental disorders and healthy people is used. The proposed method is described and the results are shown. The errors of the method with current sampling do not exceed 4&#x0025;. The developed approach using volumetric spectral surfaces has showed a high probability of determining the period of occurrence of psycho-traumatic situations in various patients using the ECG
    corecore