9,698 research outputs found

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    The structure of Inter-Urban traffic: A weighted network analysis

    Full text link
    We study the structure of the network representing the interurban commuting traffic of the Sardinia region, Italy, which amounts to 375 municipalities and 1,600,000 inhabitants. We use a weighted network representation where vertices correspond to towns and the edges to the actual commuting flows among those. We characterize quantitatively both the topological and weighted properties of the resulting network. Interestingly, the statistical properties of commuting traffic exhibit complex features and non-trivial relations with the underlying topology. We characterize quantitatively the traffic backbone among large cities and we give evidences for a very high heterogeneity of the commuter flows around large cities. We also discuss the interplay between the topological and dynamical properties of the network as well as their relation with socio-demographic variables such as population and monthly income. This analysis may be useful at various stages in environmental planning and provides analytical tools for a wide spectrum of applications ranging from impact evaluation to decision-making and planning support.Comment: 12 pages, 12 figures, 4 tables; 1 missing ref added and minor revision

    A Model of the Rise and Fall of Roads

    Get PDF
    Transportation network planning decisions made at one point of time can have profound impacts in the future. However, transportation networks are usually assumed tobe static in models of land use. A better understanding of the natural growth pattern of roads will provide valuable guidance to planners who try to shape the future network. This paper analyzes the relationships between network supply and travel demand, and describes a road development and degeneration mechanism microscopically at the linklevel. A simulation model of transportation network dynamics is developed, involving iterative evolution of travel demand patterns, network revenue policies, cost estimation,and investment rules. The model is applied to a real-world congesting network – the Twin Cities transportation network which comprises nearly 8,000 nodes and more than 20,000 links, using network data collected since year 1978. Four experiments are carried out with different initial conditions and constraints, the results from which allow us toexplore model properties such as computational feasibility, qualitative implications, potential calibration procedures, and predictive value. The hypothesis that roadhierarchies are emergent properties of transportation networks is confirmed, and the underlying reasons discovered. Spatial distribution of capacity, traffic flow, andcongestion in the transportation network is tracked over time. Potential improvements to the model in particular and future research directions in transportation network dynamicsin general are also discussed.Transportation network dynamics, Urban planning, Road suppl

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Emergent topological and dynamical properties of a real inter-municipal commuting network - perspectives for policy-making and planning

    Get PDF
    A variety of phenomena can be explained by means of a description of the features of their underlying network structure. In addition, a large number of scientists (see the reviews, eg. Barabasi, 2002; Watts, 2003) demonstrated the emergence of large-scale properties common to many different systems. These various results and studies led to what can be termed as the “new science of complex networks” and to emergence of the new “age of connectivity”. In the realms of urban and environmental planning, spatial analysis and regional science, many scientists have shown in the past years an increasing interest for the research developments on complex networks. Their studies range from theoretical statements on the need to apply complex network analysis to spatial phenomena (Salingaros, 2001) to empirical studies on quantitative research about urban space syntax (Jiang and Claramunt, 2004). Concerning transportation systems analysis, interesting results have been recently obtained on subway networks (Latora and Marchiori, 2002; Gastner and Newman, 2004) and airports (Barrat et al, 2004). In this paper, we study the inter-municipal commuting network of Sardinia (Italy). In this complex weighted network, the nodes correspond to urban centres while the weight of the links between two municipalities represents the flow of individuals between them. Following the analysis developed by Barrat et al. (2004), we investigate the topological and dynamical properties of this complex weighted network. The topology of this network can be accurately described by a regular small-world network while the traffic structure is very rich and reveals highly complex traffic patterns. Finally, in the perspective of policy-making and planning, we compare the emerging network behaviors with the geographical, social and demographical aspects of the transportation system.

    Parallel hierarchies for solving Single Source Shortest Path problem

    Get PDF
    The problem of route optimization is significant due to the fact of the high availablity of private transport as well as the need of efficient utilization of the corporate fleet. Optimal route can have different meaning for different users. In the existing algorithms designed for finding optimal route between two points on the map, hardly any preferences are reflected. In this article we present efficient algorithm for finding optimal route between points on the map which is designed to conforms Users’ needs
    • 

    corecore