256 research outputs found

    Lower Bounds in the Preprocessing and Query Phases of Routing Algorithms

    Full text link
    In the last decade, there has been a substantial amount of research in finding routing algorithms designed specifically to run on real-world graphs. In 2010, Abraham et al. showed upper bounds on the query time in terms of a graph's highway dimension and diameter for the current fastest routing algorithms, including contraction hierarchies, transit node routing, and hub labeling. In this paper, we show corresponding lower bounds for the same three algorithms. We also show how to improve a result by Milosavljevic which lower bounds the number of shortcuts added in the preprocessing stage for contraction hierarchies. We relax the assumption of an optimal contraction order (which is NP-hard to compute), allowing the result to be applicable to real-world instances. Finally, we give a proof that optimal preprocessing for hub labeling is NP-hard. Hardness of optimal preprocessing is known for most routing algorithms, and was suspected to be true for hub labeling

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    Exact Distance Oracles for Planar Graphs

    Full text link
    We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation S∈[nlg⁥lg⁥n,n2]S\in[n\lg\lg n,n^2], we show how to construct in O~(S)\tilde O(S) time a data structure of size O(S)O(S) that answers distance queries in O~(n/S)\tilde O(n/\sqrt S) time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever k∈[n,n)k\in[\sqrt n,n). * We provide a linear-space exact distance oracle for planar graphs with query time O(n1/2+eps)O(n^{1/2+eps}) for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space O~(n)\tilde O(n) such that for any pair of nodes at distance D the query time is O~(minD,n)\tilde O(min {D,\sqrt n}). Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with c=O(n)c = O(\sqrt n) nodes, we can preprocess G in O~(n)\tilde O(n) time to produce a data structure of size O(nlg⁥lg⁥c)O(n \lg\lg c) that can answer the following queries in O~(c)\tilde O(c) time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For σ∈(1,4/3)\sigma\in(1,4/3) and space S=nσS=n^\sigma, we essentially improve the query time from n2/Sn^2/S to n2/S\sqrt{n^2/S}.Comment: To appear in the proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, SODA 201

    The parameterized hardness of the k-center problem in transportation networks

    Get PDF
    In this paper we study the hardness of the k-Center problem on inputs that model transportation networks. For the problem, an edge-weighted graph G=(V,E) and an integer k are given and a center set C subseteq V needs to be chosen such that |C|<= k. The aim is to minimize the maximum distance of any vertex in the graph to the closest center. This problem arises in many applications of logistics, and thus it is natural to consider inputs that model transportation networks. Such inputs are often assumed to be planar graphs, low doubling metrics, or bounded highway dimension graphs. For each of these models, parameterized approximation algorithms have been shown to exist. We complement these results by proving that the k-Center problem is W[1]-hard on planar graphs of constant doubling dimension, where the parameter is the combination of the number of centers k, the highway dimension h, and even the treewidth t. Moreover, under the Exponential Time Hypothesis there is no f(k,t,h)* n^{o(t+sqrt{k+h})} time algorithm for any computable function f. Thus it is unlikely that the optimum solution to k-Center can be found efficiently, even when assuming that the input graph abides to all of the above models for transportation networks at once! Additionally we give a simple parameterized (1+{epsilon})-approximation algorithm for inputs of doubling dimension d with runtime (k^k/{epsilon}^{O(kd)})* n^{O(1)}. This generalizes a previous result, which considered inputs in D-dimensional L_q metrics

    Exploiting Hopsets: Improved Distance Oracles for Graphs of Constant Highway Dimension and Beyond

    Get PDF
    For fixed h >= 2, we consider the task of adding to a graph G a set of weighted shortcut edges on the same vertex set, such that the length of a shortest h-hop path between any pair of vertices in the augmented graph is exactly the same as the original distance between these vertices in G. A set of shortcut edges with this property is called an exact h-hopset and may be applied in processing distance queries on graph G. In particular, a 2-hopset directly corresponds to a distributed distance oracle known as a hub labeling. In this work, we explore centralized distance oracles based on 3-hopsets and display their advantages in several practical scenarios. In particular, for graphs of constant highway dimension, and more generally for graphs of constant skeleton dimension, we show that 3-hopsets require exponentially fewer shortcuts per node than any previously described distance oracle, and also offer a speedup in query time when compared to simple oracles based on a direct application of 2-hopsets. Finally, we consider the problem of computing minimum-size h-hopset (for any h >= 2) for a given graph G, showing a polylogarithmic-factor approximation for the case of unique shortest path graphs. When h=3, for a given bound on the space used by the distance oracle, we provide a construction of hopset achieving polylog approximation both for space and query time compared to the optimal 3-hopset oracle given the space bound

    An Efficient Algorithm for Placing Electric Vehicle Charging Stations

    Get PDF
    Motivated by the increasing popularity of electric vehicles (EV) and a lack of charging stations in the road network, we study the shortest path hitting set (SPHS) problem. Roughly speaking, given an input graph G, the goal is to compute a small-size subset H of vertices of G such that by placing charging stations at vertices in H, every shortest path in G becomes EV-feasible, i.e., an EV can travel between any two vertices of G through the shortest path with a full charge. In this paper, we propose a bi-criteria approximation algorithm with running time near-linear in the size of G that has a logarithmic approximation on |H| and may require the EV to slightly deviate from the shortest path. We also present a data structure for computing an EV-feasible path between two query vertices of G

    Tractable Pathfinding for the Stochastic On-Time Arrival Problem

    Full text link
    We present a new and more efficient technique for computing the route that maximizes the probability of on-time arrival in stochastic networks, also known as the path-based stochastic on-time arrival (SOTA) problem. Our primary contribution is a pathfinding algorithm that uses the solution to the policy-based SOTA problem---which is of pseudo-polynomial-time complexity in the time budget of the journey---as a search heuristic for the optimal path. In particular, we show that this heuristic can be exceptionally efficient in practice, effectively making it possible to solve the path-based SOTA problem as quickly as the policy-based SOTA problem. Our secondary contribution is the extension of policy-based preprocessing to path-based preprocessing for the SOTA problem. In the process, we also introduce Arc-Potentials, a more efficient generalization of Stochastic Arc-Flags that can be used for both policy- and path-based SOTA. After developing the pathfinding and preprocessing algorithms, we evaluate their performance on two different real-world networks. To the best of our knowledge, these techniques provide the most efficient computation strategy for the path-based SOTA problem for general probability distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental Algorithms 2016 and published by Springer in the Lecture Notes in Computer Science series on June 1, 2016. Includes typographical corrections and modifications to pre-processing made after the initial submission to SODA'15 (July 7, 2014

    Hierarchy of Transportation Network Parameters and Hardness Results

    Get PDF
    The graph parameters highway dimension and skeleton dimension were introduced to capture the properties of transportation networks. As many important optimization problems like Travelling Salesperson, Steiner Tree or k-Center arise in such networks, it is worthwhile to study them on graphs of bounded highway or skeleton dimension. We investigate the relationships between mentioned parameters and how they are related to other important graph parameters that have been applied successfully to various optimization problems. We show that the skeleton dimension is incomparable to any of the parameters distance to linear forest, bandwidth, treewidth and highway dimension and hence, it is worthwhile to study mentioned problems also on graphs of bounded skeleton dimension. Moreover, we prove that the skeleton dimension is upper bounded by the max leaf number and that for any graph on at least three vertices there are edge weights such that both parameters are equal. Then we show that computing the highway dimension according to most recent definition is NP-hard, which answers an open question stated by Feldmann et al. [Andreas Emil Feldmann et al., 2015]. Finally we prove that on graphs G=(V,E) of skeleton dimension O(log^2 |V|) it is NP-hard to approximate the k-Center problem within a factor less than 2
    • 

    corecore